

CAIE Chemistry IGCSE 12.5 Identification of ions and gases

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

D PMTEducation

How would you test for carbonates (CO_3^{2-}) ?

How would you test for carbonates (CO_3^{2-}) ?

- React with nitric acid, to create carbon dioxide.
- This gas can be bubbled through limewater
- If the limewater goes cloudy, a carbonate is present

How would you test for the halides (chlorides, bromides, iodides)?

How would you test for the halides (chlorides, bromides, iodides)?

- Add dilute nitric acid to the sample, followed by silver nitrate solution
- Chlorides produce a white precipitate
- Bromides produce a cream precipitate
- lodides produce a yellow precipitate

How would you test for nitrates (NO_3^{-}) ?

How would you test for nitrates (NO_3^{-}) ?

- Add aqueous sodium hydroxide
- Then add aluminium powder or foil and heat the mixture strongly.
- If nitrate ions are present, they will be reduced to ammonia, giving off ammonia gas.
- This can be identified by testing it with damp red litmus paper, which will turn blue in its presence.

Of Station

How would you test for sulfates $(SO_4^{2-})?$

How would you test for sulfates (SO_4^{2-}) ?

- First add dilute hydrochloric acid, followed by barium chloride solution
- A white precipitate will form if sulfate ions are in this solution

How would you test for sulfites $(SO_3^{2-})?$

How would you test for sulfites $(SO_3^{2-})?$

- Add a dilute acid and heat gently
- Sulfur dioxide gas is given off
- Bubble this gas through aqueous potassium manganate(VII)
- There will be a colour change from purple to colourless if the sulfite ion is present.

What happens when a few drops of NaOH and excess NaOH is added to aluminium ions (Al ³⁺)?

What happens when a few drops of NaOH and excess NaOH is added to aluminium ions (AI ³⁺)?

Observation after a few drops of NaOH is added White precipitate forms

Observation after excess NaOH is added Precipitate redissolves

What happens when a few drops of NaOH and excess NaOH is added to ammonium ions (NH₄ ⁺)?

What happens when a few drops of NaOH and excess NaOH is added to ammonium ions (NH_{A}^{+}) ? **Observation after a few drops of NaOH is** added Ammonia gas given off (identified by testing it with damp red litmus paper, which will turn blue in its presence)

Observation after excess NaOH is added No change

What happens when a few drops of NaOH and excess NaOH is added to calcium ions (Ca²⁺)?

What happens when a few drops of NaOH and excess NaOH is added to calcium ions (Ca^{2+}) ?

Observation after a few drops of NaOH is added

- White precipitate forms
- **Observation after excess NaOH is added** No change

What happens when a few drops of NaOH and excess NaOH is added to chromium (III) ions (Cr³⁺)?

What happens when a few drops of NaOH and excess NaOH is added to chromium (III) ions (Cr³⁺)?

Observation after a few drops of NaOH is added

- Grey-green precipitate forms
- **Observation after excess NaOH is added** Dark green solution forms

What happens when a few drops of NaOH and excess NaOH is added to copper (II) ions (Cu²⁺)?

What happens when a few drops of NaOH and excess NaOH is added to copper (II) ions (Cu²⁺)?

Observation after a few drops of NaOH is added

Blue precipitate forms

Observation after excess NaOH is added No change

What happens when a few drops of NaOH and excess NaOH is added to iron (II) ions (Fe²⁺)?

What happens when a few drops of NaOH and excess NaOH is added to iron (II) ions (Fe²⁺)?

Observation after a few drops of NaOH is added Green precipitate forms Observation after excess NaOH is added No change

What happens when a few drops of NaOH and excess NaOH is added to iron (III) ions (Fe³⁺)?

What happens when a few drops of NaOH and excess NaOH is added to iron (III) ions (Fe^{3+})?

Observation after a few drops of NaOH is added

Orange-brown precipitate forms Observation after excess NaOH is added No change

What happens when a few drops of NaOH and excess NaOH is added to zinc ions (Zn²⁺)?

What happens when a few drops of NaOH and excess NaOH is added to zinc ions (Zn²⁺)?

Observation after a few drops of NaOH is added

- White precipitate forms
- **Observation after excess NaOH is added** Precipitate redissolves

What happens when a few drops of ammonia and excess ammonia is added to aluminium ions (Al ³⁺)?

What happens when a few drops of ammonia and excess ammonia is added to aluminium ions (Al ³⁺)?

Observation after a few drops of ammonia is added

White precipitate forms

Observation after excess ammonia is added No change

What happens when a few drops of ammonia and excess ammonia is added to calcium ions (Ca²⁺)?

What happens when a few drops of ammonia and excess ammonia is added to calcium ions (Ca^{2+}) ?

Observation after a few drops of ammonia is added

Very faint precipitate forms **Observation after excess ammonia is added** No change

What happens when a few drops of ammonia and excess ammonia is added to chromium (III) ions (Cr³⁺)?

What happens when a few drops of ammonia and excess ammonia is added to chromium (III) ions (Cr³⁺)?

Observation after a few drops of ammonia is added

Grey-green precipitate forms

Observation after excess ammonia is added No change

What happens when a few drops of ammonia and excess ammonia is added to copper (II) ions (Cu²⁺)?

What happens when a few drops of ammonia and excess ammonia is added to copper (II) ions (Cu²⁺)?

Observation after a few drops of ammonia is added

Light blue precipitate forms

Observation after excess ammonia is added Precipitate dissolves to form a dark blue solution

What happens when a few drops of ammonia and excess ammonia is added to iron (II) ions (Fe²⁺)?

What happens when a few drops of ammonia and excess ammonia is added to iron (II) ions (Fe²⁺)?

Observation after a few drops of ammonia is added

Green precipitate forms

Observation after excess ammonia is added No change

What happens when a few drops of ammonia and excess ammonia is added to iron(III) ions (Fe³⁺)?

What happens when a few drops of ammonia and excess ammonia is added to iron(III) ions (Fe³⁺)?

Observation after a few drops of ammonia is added

Orange-brown precipitate forms

Observation after excess ammonia is added No change

What happens when a few drops of ammonia and excess ammonia is added to zinc ions (Zn²⁺)?

What happens when a few drops of ammonia and excess ammonia is added to zinc ions (Zn²⁺)?

Observation after a few drops of ammonia is added

White precipitate forms

Observation after excess ammonia is added Precipitate dissolves to form a colourless solution

How would you distinguish between Aluminium ions, Al ³⁺ Calcium ions, Ca²⁺ Zinc ions, Zn²⁺

How would you distinguish between aluminium ions, calcium ions and zinc ions

- -These 3 cations all produce white precipitates
 - To distinguish Calcium ions (Ca²⁺)
 The white precipitate formed when NaOH is added does not dissolve in excess NaOH, whereas the hydroxide precipitates of aluminium and zinc do
 - To distinguish Zinc ions (Zn²⁺)
 - The white precipitate formed when a few drops of ammonia is added to zinc dissolves into a colourless solution when excess ammonia is added, but the white precipitate of aluminium doesn't dissolve

How would you test for ammonia $NH_3(g)$?

How would you test for ammonia $NH_3(g)$?

Turns damp red litmus paper blue

How would you test for carbon dioxide $CO_2(g)$?

How would you test for carbon dioxide $CO_2(g)$?

- Bubble the gas through the limewater (calcium hydroxide)
- If carbon dioxide is present, the limewater will turn cloudy

How would you test for chlorine $Cl_2(g)$?

How would you test for chlorine $Cl_2(g)$?

When damp litmus paper is put into chlorine gas the litmus paper is bleached and turns white

How would you test for hydrogen $H_2(g)$?

How would you test for hydrogen $H_2(g)$?

- Hold a burning splint at the open end of a test tube of the gas sample
- Creates a 'squeaky pop' sound if hydrogen gas is present

How would you test for oxygen $O_2(g)$?

How would you test for oxygen $O_2(g)$?

- Insert a glowing splint into a test tube of the gas sample
- Splint relights if oxygen gas is present

How would you test for sulfur dioxide $SO_2(g)$?

How would you test for sulfur dioxide $SO_2(g)$?

- Bubble the gas through aqueous potassium manganate(VII)
- If sulfur dioxide gas is present, there will be a colour change from purple to colourless

Suggest the flame results for the following cations:

- Lithium
- Sodium
- Potassium
- Calcium
- Barium
- Copper

Suggest the flame results for the following cations:

Flame test results:

Cation	Flame colour
Lithium, Li⁺	Crimson
Sodium, Na ⁺	Yellow
Potassium, K⁺	Lilac
Calcium, Ca ²⁺	Red
Barium, Ba ²⁺	Yellow-green
Copper(II), Cu ²⁺	Blue-green

