

AQA GCSE Chemistry

Topic 7: Organic chemistry

Reactions of alkenes and alcohols (chemistry only)

Notes

(Content in bold is for Higher Tier only)

www.pmt.education

▶ Image: Second Second

Structure and formulae of alkenes

- Alkenes have the general formula C_nH_{2n}
- they have at least one carbon-carbon double bond, making them unsaturated because they contain two fewer hydrogen atoms than the alkane with the same number of carbon atoms.
- The first 4 alkenes are ethene, propene, butene and pentene
- Unsaturated carbons can be represented in the following forms:

Reactions of alkenes

- Alkenes are hydrocarbons with the functional group C=C (functional groups are usually responsible for the reactions of organic compounds)
- They react with oxygen in combustion reactions in the same way as other hydrocarbons, but they tend to burn in air with smoky flames because of *incomplete combustion* (meaning carbon or carbon monoxide is formed (CO))
- They also react with hydrogen, water and the halogens, by the addition of atoms across the carbon-carbon double bond so that the double bond becomes a single carbon-carbon bond :

ethene	C ₂ H ₄	H H C=C H H	plus bromine (Br ₂):
propene	C ₃ H ₆	H H H H - C - C = C H H H H H	plus water: H H H H—C—C—C—OH H H H propanol
butene	C ₄ H ₈	H H H H H-C-C=C-C-H H H H H H	plus hydrogen (H ₂):

- In each reaction with hydrogen, water and halogens:
 - every reaction works the same for all alkenes, the table just shows examples.
 - $\circ ~$ the C=C bond is broken to form a C-C bond
 - the compound added splits into two groups and the two groups are added to the 2 different carbons in the C=C bond (each group can be added to either carbon)
 - H₂ splits into 2 H's, H₂O splits into a H and an OH, Br₂ splits into 2 Br's (same for Cl₂ or l₂)

<u>Alcohols</u>

- Alcohols contain the functional group –OH
- The first 4 members of the series are methanol, ethanol, propanol and butanol:

methanol	CH₃OH	Н Н-С-О-Н Н
ethanol	C₂H₅OH	н н н—с—с—он н н н н
propanol	C ₃ H ₇ OH	н н н
butanol	C ₄ H ₉ OH	H H H H H-C-C-C-C-OH H H H H

• alcohols can be represented by:

www.pmt.education

Reactions of methanol, ethanol, propanol and butanol:

- They burn in air, which produces carbon dioxide and water
- They dissolve in water to form a neutral solution (has a pH of 7)
- They react with sodium to produce hydrogen and a salt (e.g. C₂H₅ONa- the H has been given off and Na has been added)
- They react with oxidising agents to form carboxylic acids

Uses of methanol, ethanol, propanol and butanol:

- methanol: chemical feedstock, in anti-freeze, to make biodiesel
- Ethanol: the main alcohol in alcoholic drinks, used as a solvent and fuel
- All 4: can be used as fuels

Producing ethanol:

- Ethanol can be produced by fermentation of sugar with yeast, using renewable sources.
- Conditions: about 35°C, anaerobic (without oxygen) and yeast enzyme catalyst
- Sugar \rightarrow ethanol + carbon dioxide

Carboxylic acids

• Ethanoic acid is a member of the carboxylic acids, they have the functional group –COOH.

H = 0 H = 0 H = 0 H = 0 H = 0 H = 0 H = 0 H = 0 H = 0

CH₂COOH

• First four members are: methanoic acid, ethanoic acid, propanoic acid and butanoic acid:

methanoic acidCHOOH \bigcirc
H \bigcirc
Hethanoic acidCH_3COOHHHpropanoic acidC22H_5COOHHHHOHHHHOHHHHHOHHH

www.pmt.education

Reactions of methanoic acid, ethanoic acid, propanoic acid and butanoic acid:

- They dissolve in water to produce acidic solutions (pH less than 7)
- They react with metal carbonates to produce carbon dioxide (turns limewater cloudy), a salt and water
- React with alcohols in the presence of an acid catalyst to produce esters
- React with alcohols to produce esters...

- They do not ionise completely in solutions, so do not release many H⁺ ions, making carboxylic acids weak acids.
- This means they have a higher pH (less acidic) than solutions of strong acids of the same concentration.

🕟 www.pmt.education