1. Synthetic polyamides, such as nylon, contain the same link as polypeptides. Nylon is the general name for a family of polyamides.

A short section of a nylon polymer is shown below.

Draw the structures of **two** monomers that could be used to make this nylon.

[Total 2 marks]

2. Short sections of the molecular structures of two polymers are shown below.

polymer C

polymer D

(a) (i) Circle, on the diagrams above, the simplest repeat unit in each polymer.

[2]

1

(ii)	In the boxes below, draw the displayed formulae of the two monomers that
	could be used to prepare polymer D .

[2]

(b) Chemists have developed degradable polymers to reduce the quantity of plastic waste being disposed of in landfill sites. Polymer **D** is more likely to be a 'degradable polymer' than polymer **C**.

Suggest two reas	sons wny.	

[2]

[Total 6 marks]

3. Nylon is sometimes used for electrical insulation. However, if there is a risk of high temperatures then a polymer such as Nomex[®], with a higher melting point, is used.

The repeat unit of Nomex[®] is shown below.

Plymstock School 2

(i) Draw the structures of two monomers that could be used to form Nomex[®].

[2]

(ii)	Suggest a reason why the melting point of Nomex® is higher than that of nylor

[1]

[Total 3 marks]

4. The fibres used in carpets are made from synthetic or natural polymers such as nylon-6,6, *Orlon*TM and wool.

(a) Complete the table below.

	nylo-6,6	Orlon [™]
monomer(s)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$H_2N \longrightarrow (CH_2)_6 \longrightarrow NH_2$	
repeat unit of the polymer		H CN H H
type of polymerisation		

[4]

(b) Nylon-6,6 can be made from its monomers in the laboratory in two stages as shown below.

(i)	State a suitable reagent to carry out stage 1 .

[1]

(ii) Deduce the inorganic product that is also formed in **stage 2**.

[1]

(c) Industrially, nylon-6,6 is **not** manufactured by the method in (b). Instead, the two monomers are mixed directly at room temperature to give a salt. This salt is then heated to convert it to nylon-6.6.

Suggest the structures of the two ions present in this salt.

(d) Wool is a protein. It is a natural polymer made by the same type of polymerisation as nylon-6,6.

A section of the polymer chain in a protein is shown below.

(i) How many monomer units does this section contain?

.....

[1]

(ii) Draw the structure of **one** of the monomer molecules that was used to form this section.

[1]

		(iii)	State three ways in which the monomer units of a protein differ from the of nylon-6,6.	nose
			דן	[3] otal 13 marks
5.	Poly(p	pheny	ylethene) is one of the most versatile and successful polymers.	
	The 3 diagra		celetal formula of a section of atactic poly(phenylethene) is shown in the elow.	•
	(i)	State	e the type of polymerisation used to make poly(phenylethene).	
				[1]
			a skeletal or displayed formula to show the monomer used to make phenylethene).	

Plymstock School 6

[1]

(iii)	Outline how the polymer is formed from the monomer molecules. (You do not need to give any details of the catalyst or conditions involved.)	
		[2]
	[Tota	al 4 marks]

Plymstock School 7