Mark Scheme - C1.6 The Periodic Table 1. same number of protons and electrons (1) (a) 0, 1 and 2 neutrons (1) [2] (b) (i) 3 energy levels between n = 2 and $n = \infty$ becoming closer together first gap must be < that between n = 1 and n = 2[1] (ii) any arrow pointing upwards (1) from n = 1 to $n = \infty$ (1) [2] visible [1] (c) (i) (ii) (not correct because) Balmer series corresponds to energy transitions involving n = 2 (1) for ionisation energy need Lyman series / energy transitions involving n = 1 (1)[2] $Q(g) \rightarrow Q^{+}(g) + e / accept any symbol$ (d) (i) [1] (ii) Group 6 [1] In T there is more shielding (1) (iii) The outer electron is further from the nucleus (1) The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1) [3] Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning QWC [1] | (a) | (i) | Energy required to remove one mole of electrons from one mole of atoms / to form one mole of positive ions from one mole of atoms (1) in the gaseous state (to form 1 mol of gaseous ions) (1) | | | | |-----|---|--|----------|--|--| | | | (Accept correct equation) | [2] | | | | | (ii) | Cross between Na and Mg crosses | [1] | | | | | (iii) | P only has unpaired electrons, S has a pair of electrons in 3p orbital (1) | | | | | | | Repulsion between the paired electrons makes it easier to remove one of the electrons (1) | e
[2] | | | | (b) | (i) | Effective nuclear charge is greater / electron being removed from positive ion | a
[1] | | | | | (ii) | Accept from 6000 to 9000 | [1] | | | | (c) | Lines are formed from electron being excited and jumping up to a higher energy level (1) Falling back down to the n = 2 level (1) | | | | | | | Emitting energy / photon of light (1) | | | | | | | Lines become closer since the electron energy levels of a hydrogen atom become closer (1) | | | | | | | QWC Selection of a form and style of writing appropriate to purpose and to | | | | | | | com | plexity of subject matter | [1] | | | | | | | | | | Total [12] | (a) | Weighing bottle would not have been washed / difficult to
dissolve solid in volumetric flask / final volume would not | | | | | |-----|--|---|------|---------|--| | | nece | ssarily be 250 cm ³ | | [1] | | | (b) | Pipette | | | | | | (c) | To show the end point / when to stop adding acid / when it's neutralised | | | | | | (d) | So that a certain volume of acid can be added quickly before adding drop by drop / to save time before doing accurate titrations / to give a rough idea of the end point | | | | | | (e) | Тоо | To obtain a more reliable value | | | | | (f) | (i) | Moles = 0.730/36.5 = 0.0200 | (1) | | | | | | Concentration = 0.02/0.1 = 0.200 mol dm ⁻³ | (1) | [2] | | | | (ii) | Moles = 0.2 x 0.0238 = 0.00476 | | [1] | | | | (iii) | 0.00476 | | [1] | | | | (iv) | $0.00476 \times 10 = 0.0476$ | | [1] | | | | (v) | M _r = 1.14/0.0476 = 23.95 | | [1] | | | | (vi) | Lithium - mark consequentially throughout (f) | | [1] | | | | | | Tota | ıl [12] | | nitrogen / phosphorus (or any other Group 5 element) [1] 5. Name of any commercially/ industrially important chlorine containing compound e.g. (a) (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation - do not accept CFCs [1] (i) $K_c = [HI]^2$ must be square brackets $[H_2][I_2]$ (b) [1] $K_c = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$ follow through error (ft) [1] (iii) K_c has no units [1] when temperature increases Kc increases (1) (iv) this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1) therefore ΔH for forward reaction is +ve (1) (mark only awarded if marking point 2 given) [3] +2 (c) (i) [1] co-ordinate/ dative (covalent) (ii) [1] pink is $[Co(H_2O)_6]^{2+}$ and blue is $[CoCl_4]^{2-}$ (1) (iii) (ligand is) Cl (1) (addition of HCl sends) equilibrium to RHS (1) [3] [Co(H₂O)₆]²⁺ shown as octahedral [with attempt at 3D] (1) (iv) [CoCl₄]²⁻ shown as tetrahedral/ square planar (1) [2] ``` Number of moles of HCI = 80 \times 0.20 = 0.016 (1) (a) (i) 1000 Number of moles of calcium needed = 0.008 (1) Number of moles of calcium actually used = 0.40 = \sim 0.010 (1) (::calcium is present in excess) [Calculation could be carried out in grams] [3] gas bubbles / effervescence / some calcium 'dissolves' / (ii) colourless solution produced [1] Mass of E in solution at 0 °C = 0.13 \times 2 = 0.26 \text{ g} (1) (b) .: Quantity precipitated = 1.50 - 0.26 = 1.24 g (1) [2] (C) (i) Brick red / orange-red [1] Cream predipitate (accept off-white predipitate) (ii) [1] (iii) Aa + Br → AaBr [1] (iv) Red / brown solution [1] Calcium bromide is an ionic compound (1) (v) and contains Ca2+ and Br ions (1) Chlorine reacts with the bromide ions in a redox/ displacement reaction (1) Chlorine is a more powerful oxidising agent/has a greater affinity for electrons than bromine (1) 2Br + Cl₂ → Br₂ + 2Cl (1) [5] QWC: ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear [1] ``` Total [16] | 7. (a) | (i) | | 128 | - E6 963 | | | |--------|------------|--|--|--|----------------------|--| | (a) | (1) | | magnesium
nitrate | barium
chloride | sodium
hydroxide | | | | | potassium
carbonate | white precipitate | white precipitate | no visible
change | | | | | sodium | WHITE
PRECIPITATE | NO VISIBLE
CHANGE | | | | | | hydroxide | | CHANGE | | | | | | barium chloride | NO VISIBLE
CHANGE | | | | | | | All three correct fo | r 2 <mark>mar</mark> ks, two co | orrect for 1 mark | [2] | | | | (ii) | Name of precipitat
Ionic equation: Mg | | | [2] | | | (b) | (i) | Sodium hydroxide solution would turn blue/purple [Ignore references to potassium carbonate] [1] | | | | | | | (ii) | Potassium carbona
Sodium hydroxide
Barium chloride wo
(2 for all correct, 1 | would give a go
ould give an appl | lden yellow flame
e green flame | | | | | | 1 max if any refere | Children and the contract of t | [2] | | | | | (iii) | Barium chloride (1) White precipitate (1) | | | | | | (c) | (i) | Sodium ions surrounded by δ– on oxygen atoms of water (1) Bromide ions surrounded by δ+ on hydrogen atoms of water (1) Marks can be obtained from a labelled diagram – must show minimum of two oxygen/hydrogen atoms around sodium/bromide ions [2] | | | | | | | (ii) | Observation with s | odium bromide | cream precipitate | (1) | | | | | Observation with s | odium iodide | yellow precipitate | (1) [2] | | | | (iii) | Observations with
both observations
[If concentrated an | odium bromide:
sodium iodide: p
required for (1) | (1)
precipitate dissolve
precipitate does not
then sodium bromi | change | | | | <i>r</i> 3 | 01.1.5 | Secretary of the secret | ********************** | | | | | (iv) | 2Nal + Br ₂ → 2NaE | or + I ₂ allow | ionic equation | [1] | | Total [16] 8. - (c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons) [1] - (ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field no credit for 'so that atoms can be deflected...' [1] - (iii) They are deflected by a magnetic field / according to the m/z ratio [1] (d) 1s 2s 2p 3s 3p (e) (i) $$Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$$ [1] (ii) moles $$Mg(OH)_2 = 1.75/58.32 = 0.0300 (1)$$ moles $Mg_3N_2 = 0.0100 (1)$ mass $Mg_3N_2 = 0.01 \times 100.9 = 1.01 g (1)$ [3] - must be 3 significant figures to gain third mark (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1) apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1) [2] - (b) (i) fewer moles of barium used / barium has a higher A_r [1] - (ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1) because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1) [2] (c) flame test (1) brick red for calcium and (apple) green for barium (1) OR add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1) white precipitate with Ba²⁺, less precipitate/ no precipitate with Ca²⁺ (1) [2] - (d) electrons correct oxide ion clearly shows that 2 electrons originated from calcium atom (1) charges correct (1) [2] - (e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1) filter (1) (ii) moles Ba = 2/137 (1) mass BaSO₄ = $$2 \times 233.1 = 3.4$$ (g) (1) [2] | (a) | (i) | Potassium bursts into flames sodium does not / potassium darts about surface more vigorously than sodium [1] | | | |-----|--|--|-----------|--| | | (ii) | $1^{\rm st}$ ionisation energy decreases as group is descended / as ele has higher $A_{\rm r}$ (1) | ment | | | | | (Atom) becomes larger / outer electron further from nucleus / more shielding / less effective nuclear charge (1) | [2] | | | | (iii) | As group descended outer electron more easily lost | [1] | | | (b) | (i) Electronegativity (difference between the atoms) (1) | | | | | | | The bigger the difference the more likely is an ionic bond / OR. covalent (1) | A for [2] | | | | (ii) | Ionic: high electron density centred round ions / shown on diagram | n (1) | | | | | Covalent: high electron density between nuclei/atoms / show diagram (1) | n on | | | | | Intermediate: high electron density between nuclei/atoms but h nearer one of them / ions with electron distortion of negative ion (1 | | | | (c) | (i) | Calcium | [1] | | | | (ii) | Calcium chloride/ CaCl2 – error carried forward (ecf) from (i) | [1] | | | | (iii) | White precipitate/ solid – ecf from (i) | [1] | | | | (iv) | $Ca^{2+} + 2OH^{-} \rightarrow Ca(OH)_{2}$ (ignore state symbols) – ecf from (i) | [1] | | | | | Penalise incorrect metal once only in (c) | | | | | | Total | [13] | |