Mark Scheme - AS 2.5 Hydrocarbons

1 (a) Boiling temperatures increase with increasing chain length / number of carbon atoms / relative mass (1)

More carbon atoms leads to greater number of van der Waals' forces between molecules (1)

[2]

(b) (i) Mass of petroleum gases = 1.2% × 145, 000 = 1740g (1) Moles of butane = 1740 ÷ 58.1 = 30 mol (1) Volume of butane = 30 × 24 = 720 dm³ (1) [3]

(ii) I. ultraviolet light [1]

II. $Cl_2 \rightarrow 2Cl^{\bullet}$ [1]

III. (Propane forms) propyl radicals / C₃H₇• (1)
Two C₃H₇• radicals combine together to make hexane (1) [2]

(c) Brent crude would be better as it has more naphtha (1)

Naphtha is cracked to produce alkenes (1)

Cracking is caused by heating / zeolites / aluminosilicates / porcelain (1)

Any valid equation that produces ethene e.g. $C_{10}H_{22} \rightarrow C_2H_4 + C_8H_{18}$ (1)

Polymerisation: Many small molecules joining together to make a large molecule (1)

Addition polymerisation (1)

e.g. polystyrene, PVC, PTFE and relevant monomer (1)

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate [1]

Total [16]

- 2 (a) (i) Petroleum is heated/evaporated (1)
 Fractions condense at different temperatures / separated into fractions
 with different boiling temperatures (1)
 - [2]

(ii) C₅H₁₂ (1)

Branched chain therefore

$$CH_3$$
 CH_3 CH_3

- (b) (i) It enables more useful compounds to be made from the compound
 [1]
 - (ii) C₉H₂₀ \rightarrow CH₄ + C₄H₆ + C₄H₁₀ [1]
- (c) (i) UV light [1]
 - (ii) A step during which a radical reacts and another one is formed
 [1]
 - (iii) CI• + CH4 \rightarrow •CH3 + HCI [or •CH3 + Cl2 \rightarrow CH3CI + CI•] [1]
- (d) (i) H CH_2OH CH_2OH [1]
 - (ii) Aqueous sodium hydroxide [1]
 - (iii) Pt/N/Pd [1]
 - (iv) Compound E does not contain an O—H bond (1)
 This is present in Compound D at a frequency of 2500-3550 cm⁻¹ (1)

[2]

[2]

Total [14]

_	
3	_
J	

[1]

4 (a) C₁₉H₄₀ [1]

- (b) $C_{19}H_{40} \rightarrow C_{8}H_{18} + C_{11}H_{22}$ allow ecf [1]
- 5 (a) incomplete p sub-shell/ outer electron configuration s²p⁵/ outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital
 [1]
 - (b) (i) gaining one electron completes shell/ gives p⁶/ takes an electron from another species/gains an electron
 do not accept 'attracts an electron' [1]
 - (ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended

[1]

- (c) oxidation state is (+)5/ V
 do not accept '5+' [1]
- (d) (i) $Cl_2 \rightarrow 2Cl^{\bullet}$ ignore hf [1]
 - (ii) $CH_4 + CI^{\bullet} \rightarrow HCI + {^{\bullet}CH_3}(1)$ ${^{\bullet}CH_3} + CI_2 \rightarrow CH_3CI + CI^{\bullet}(1)$ [2]
- (e) products: *CFH₂ and CI*(1)

 C-CI bond is the weakest/ most easily broken (1)

 [2]

Total [9]

6 (a) (i) 1 mark for arrows in first diagram; 1 mark for arrow in second diagram; 1 mark for all charges

2 max if incorrect isomer given

- (ii) 2-bromopropane formed from a secondary carbocation (1) Secondary carbocations are more stable than primary carbocations (1) [2]
- (b) Empirical formula = C₃H₅Br (1)

 Molecular formula = C₃H₅Br

 (must show use of mass spectrum to gain this mark) (1)

 Two molecular ion peaks as there are two isotopes of bromine (1)

 Peaks at 15 = CH₃⁺ and 41 = C₃H₅⁺ (1)

 550 cm⁻¹ = C−Br 1630 cm⁻¹ = C=C 3030cm⁻¹ = C−H (1)

 Molecule is:

QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1]

Total [12]

[3]