AQA A2 CHEMISTRY

TOPIC 5.3

REDOX EQUILIBRIA

BOOKLET OF PAST EXAMINATION QUESTIONS

			(Total 1
Use	the dat	a in the table below, where appropriate, to answer the	e questions which follow.
	Stand	dard electrode potentials	<u>E^e/V</u>
		$Fe^{3+}(aq) + e^{-} \rightarrow F2^{2+}(aq)$	+0.77
		$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
	2Br	$O_3^-(aq) + 12H^+(aq) + 10e^- \rightarrow Br_2(aq) + 6H_2O(1)$	+1.52
		$O_3(g) + 2H^+(aq) + 2e^- \rightarrow O_2(g) + H_2O(1)$	+2.08
		$F_2O(g) + 2H^+(aq) + 4e^- \rightarrow 2F^-(aq) + H_2O(1)$	+2.15
	Each	of the above can be reversed under suitable condition	ns.
(a)	(i)	Identify the most powerful reducing agent in the tab	ble.
	(ii)	Identify the most powerful oxidising agent in the ta	ble.
	(iii)	Identify all the species in the table which can be ox BrO_3^- (aq).	idised in acidic solution by
(b)		•	idised in acidic solution by
(b)		BrO ₃ (aq).	idised in acidic solution by
(b)		BrO $_3^-$ (aq).	idised in acidic solution by
(b)	The	BrO $_3^-$ (aq).	
(b)	The (i)	BrO_3^- (aq). cell represented below was set up. $Pt Fe^{2+}$ (aq), Fe^{3+} (aq) $\parallel BrO_3^-$ (aq), Br_2 (aq) Pt Deduce the e.m.f. of this cell. Write a half-equation for the reaction occurring at the	he negative electrode when
(b)	The (i)	BrO $_3^-$ (aq). cell represented below was set up. Pt Fe $^{2+}$ (aq), Fe $^{3+}$ (aq) BrO $_3^-$ (aq), Br2(aq) Pt Deduce the e.m.f. of this cell. Write a half-equation for the reaction occurring at the current is taken from this cell. Deduce what change in the concentration of Fe $^{3+}$ (ac e.m.f. of the cell. Explain your answer.	he negative electrode when a) would cause an increase in the
(b)	The (i)	BrO $_3^-$ (aq). cell represented below was set up. Pt Fe $^{2+}$ (aq), Fe $^{3+}$ (aq) BrO $_3^-$ (aq), Br $_2$ (aq) Pt Deduce the e.m.f. of this cell. Write a half-equation for the reaction occurring at the current is taken from this cell. Deduce what change in the concentration of Fe $^{3+}$ (accentration)	he negative electrode when a) would cause an increase in the

Standard electrode potential	ls		E^{Θ}/V
$S_2O_8^{2-}$ (aq)	+ 2e [−] →	2SO ₄ ²⁻ (aq)	+2.01
$MnO_4^-(aq) + 8H^+(aq)$	+ 5e [−] →	$Mn^{2+}(aq) + 4H_2O(1)$	+1.51
$Cl_2(aq)$	+ 2e [−] →	2Cl ⁻ (aq)	+1.36
$Cr_2O_7^{2-}(aq) + 14H^+(aq)$	+ 6e [−] →	$2Cr^{3+}(aq) + 7H_2O(1)$	+1.33
$NO_3^-(aq) + 3H^+(aq)$	+ 2e [−] →	$HNO_2(aq) + H_2O(1)$	+0.94
$Fe^{3+}(aq)$	$+$ e^{-} \rightarrow	$Fe^{2+}(aq)$	+0.77
a) From the table above, selec	t the species	which is the most power	erful reducing agent.
Deduce the oxidation state of	of		
(i) chromium in $Cr_2O_7^{2-}$			

Calculate the e.m.f. of the cell represented by

added to an aqueous solution of $\mathrm{Mn}^{2+}(\mathrm{aq})$ ions.

 $Pt \mid Mn^{2+}(aq), \, MnO_{\,\,4}^{\,\,-}\,(aq) \parallel \, S_2O_8^{\,2-}(aq), \, \, SO_4^{\,2-}(aq) \mid Pt$

Deduce an equation for the reaction which occurs when an excess of $\,S_2O_8^{2-}$ (aq) is

(c)

(i)

(ii)

(2)

(Total 13 marks)

4. Use the standard electrode potential data given in the table below, where appropriate, to answer the questions which follow.

		E^{\bullet}/V
$V^{3+}(aq) + e^{-} \rightarrow$	$V^{2+}(aq)$	-0.26
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow$		+0.17
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow$	$V^{3+}(aq) + H_2O(1)$	+0.34
$O_2(g) + 2H^+(aq) + 2e^- \rightarrow$	$H_2O_2(aq)$	+0.68
$Fe^{3+}(aq) + e^{-} \rightarrow$	$Fe^{2+}(aq)$	+0.77
$VO_2^+(aq) + 2H^+(aq) + e^- \rightarrow$	$VO^{2+}(aq) + H_2O(1)$	+1.00
$2IO_3^-(aq) + 12H^+(aq) + 10e^- \rightarrow$		+1.19
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow$	2 . 2	+1.52
• •	- · · ·	

Each of the above can be reversed under suitable conditions.

(a) The cell represented below was set up under standard conditions.

$$Pt \mid H_2SO_3(aq), \ SO \ _{_4}^{2-}(aq), \ \parallel Fe^{3+}(aq), \ Fe^{2+}(aq) \ | Pt$$

(i) Calculate the e.m.f. of this cell.

(ii) Write a half-equation for the oxidation process occurring at the negative electrode of this cell.

		Pt $H_2O_2(aq)$, $O_2(g) \parallel IO {_3}(aq)$, $I_2(aq) \mid Pt$	
	(i)	Write an equation for the spontaneous cell reaction.	
	(ii)	Give one reason why the e.m.f. of this cell changes when the electrodes are connected and a current flows.	
	(iii)	State how, if at all, the e.m.f. of this standard cell will change if the surface area of each platinum electrode is doubled.	
	(iv)	State how, if at all, the e.m.f. of this cell will change if the concentration of IO $\frac{1}{3}$	
		ions is increased. Explain your answer.	
		Change, if any, in e.m.f. of cell	
		Explanation	
			(7)
(c)	V^{2+} (a in the	xcess of acidified potassium manganate(VII) was added to a solution containing aq) ions. Use the data given in the table to determine the vanadium species present e solution at the end of this reaction. State the oxidation state of vanadium in this ies and write a half-equation for its formation from V^{2+} (aq).	
	Vana	adium species present at end of reaction	
	Oxid	ation state of vanadium in final species	
	Half-	-equation	
		(Total 12	(3) marks)

The cell represented below was set up under standard conditions.

(b)

5.	Use the table of standard electrode potentials given below to answer the following questions.

	E^{\bullet}/V
$\text{Cl}_2(g) + 2e^- \rightarrow 2\text{Cl}^-(aq)$	+ 1.36
$Br_2(l) + 2e^- \rightarrow 2Br^-(aq)$	+1.07
NO_3^- (aq) + $3H^+$ (aq) + $2e^- \rightarrow HNO_2(aq) + H_2O(1)$	+0.94
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$I_2(aq) + 2e^- \rightarrow 2\Gamma(aq)$	+0.54
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_2O(1)$	+0.34
$V^{3+}(aq) + e^{-} \rightarrow V^{2+}(aq)$	-0.26
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44

(a)	In terms of electron tra	ansfer, define the term	oxidising agent.

.....(1)

(b)	(i)	Give the conditions under which the electrode potential for $\text{Cl}_2(g)/2\text{Cl}^-(aq)$ is $+1.36\ \text{V}.$

(ii) Give a change in one of these conditions which would result in the electrode potential becoming more positive. Explain your answer.

Change in conditions

Explanation

.....

- (c) (i) Which of the reducing agents in the table is the weakest?
 - (ii) Identify all the species in the table which could convert Γ aq) into $I_2(aq)$ but which could not convert $Br^-(aq)$ into $Br_2(l)$.

(iii) Identify the metal ions which would be left in solution if an excess of powdered iron metal was added to an acidified solution containing VO²⁺(aq) ions.

(5)

				E^{\bullet}/V
	$Ce^{4+}(aq) + e^{-}$	-	Ce ³⁺ (aq)	+1.70
M	$nO^{-}(aq) + 8H^{+}(aq) + 5e^{-}$	\rightleftharpoons	$Mn^{2+}(aq) + 4H_2O(1)$	+1.51
	$\text{Cl}_2(g) + 2e^-$	~	2Cl ⁻ (aq)	+1.36
,	$VO_2^+(aq) + 2H^+(aq) + e^-$	\rightleftharpoons	$VO^{2+}(aq) + H_2O(1)$	+1.00
	$Fe^{3+}(aq) + e^{-}$	-	$Fe^{2+}(aq)$	+0.77
SC	$0_4^{2-}(aq) + 4H^+(aq) + 2e^-$	=	$H_2SO_3(aq) + H_2O(l)$	+0.17
	e the standard reference electrice.	ectrode	against which all other elec	ctrode potentials are
	n the standard electrode por rode is required.	tential	for $\operatorname{Fe}^{3+}(\operatorname{aq}) / \operatorname{Fe}^{2+}(\operatorname{aq})$ is m	easured, a platinum
(i)	What is the function of th	e plati	num electrode?	
()				
(ii)	What are the standard corthis potential?	ndition	us which apply to Fe ³⁺ (aq)/F	Ge ²⁺ (aq) when measuring
		ndition	s which apply to Fe ³⁺ (aq)/F	Ge ²⁺ (aq) when measuring
		ndition	ns which apply to Fe ³⁺ (aq)/F	Ge ²⁺ (aq) when measuring
		ndition	ns which apply to Fe ³⁺ (aq)/F	Ge ²⁺ (aq) when measuring
(ii)				Fe ²⁺ (aq) when measuring
(ii)	this potential?	set up		Ge ²⁺ (aq) when measuring
(ii)	this potential? cell represented below was Pt H ₂ SO ₃ (aq), SO ₂	set up	under standard conditions.	
(ii) The c	this potential? cell represented below was Pt H ₂ SO ₃ (aq), SO ₂ ulate the e.m.f. of this cell a	set up ₄ ^{2–} (aq) and wr	under standard conditions. MnO ₄ ⁻ (aq), Mn ²⁺ (aq) Pt	taneous cell reaction.
(ii) The c	this potential? cell represented below was Pt H ₂ SO ₃ (aq), SO ₂ ulate the e.m.f. of this cell a	set up 4 ^{2–} (aq) and wr	under standard conditions. MnO ₄ ⁻ (aq), Mn ²⁺ (aq) Pt ite an equation for the spon	taneous cell reaction.

Use the standard electrode potential data in the table below to answer the questions which follow.

6.

(d)	(i)	Which one of the species gi	ven in the table is	s the strongest oxidising agent?	
	(ii)	Which of the species in the convert Mn ²⁺ (aq) into MnO		ert Fe ²⁺ (aq) into Fe ³⁺ (aq) but could not	
					(3)
(e)				tials to deduce the cell which would using the convention shown in part (c).	
				(Total 12 ma	(2) arks)
		ks of magnesium are bolted on erted into iron(II), one of the		n ships in an attempt to prevent the iron	
Use	the dat	a below, where appropriate, to	o answer the ques	stions which follow.	
				E [♣] / V	
		$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons$ $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons$	Mg(s)	-2.37	
		$Fe^{2+}(aq) + 2e^{-}$	Fe(s)	-0.44	
	C	$O_2(g) + 2H_2O(1) + 4e^-$	4OH ⁻ (aq)	+0.40	
(a)	stanc		quation for the re) Mg ²⁺ (aq) Fe ²⁺ (aq) Fe(s) under eaction occurring at the negative	
	Cell	e.m.f			
	Half	equation			
	•••••				(2)
(b)		uce how the e.m.f. of the cell I entration of Mg ²⁺ is decreased		$Fe^{2+}(aq) Fe(s) $ changes when the nswer.	
	Chai	nge in e.m.f			
	Expl	anation			
	•••••				(3)

7.

(c)	Pt(s	$S) OH^-(aq) O_2(g)$	for the e.m.f. of the cell represented (3) Fe ²⁺ (aq) Fe(s) and use it to explai contains dissolved oxygen.		ı contact
	Cel	l e.m.f			
	Exp	olanation			
					(2) (Total 7 marks)
The	table	below shows so	ome values for standard electrode po	otentials.	
	Ele	ctrode	Electrode reaction	$E^{\mathbf{\Phi}}/\operatorname{V}$	
		A	$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.18	
		В	$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	- 0.44	
		C	$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	- 0.25	
		D	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	- 0.14	
		E	$2H^+(g) + 2e^- \rightleftharpoons H_2(g)$?	
(a)	(i)	Give the nar electrode po	me of electrode E and indicate its rotentials.	le in the determination of st	andard
					(2)

What is the value of the standard electrode potential for electrode \mathbf{E} ?

(1)

8.

(ii)

(b)	The diagr	electrochemical cell set up between electrodes C and D can be represented by the cell ram:	
		$\operatorname{Ni}(s) \left \operatorname{Ni}^{2+}(aq) \right \left \operatorname{Sn}^{2+}(aq) \right \operatorname{Sn}(s)$	
	(i)	Calculate the e.m.f. of this cell.	
	(ii)	State which would be the positive electrode.	(1)
	(iii)	Write an equation to show the overall reaction in the cell.	(1)
(c)		the standard electrode potential data given in the table above:	(1)
	(i)	to explain whether or not you would expect a reaction to occur if a piece of tin were to be added to a test tube containing aqueous iron(II) sulphate;	
			(2)
	(ii)	to predict and explain two observations you would expect to make if a small piece of manganese were to be added to a test tube containing hydrochloric acid of concentration 1 mol dm ⁻³ .	
		(Total 12 ma	(4) arks)

9. Use the data below to answer the questions that follow

Reaction at 298 K		E^{Θ}/V	
$Ag^{+}(aq) + e^{-}$	\rightarrow	Ag(s)+	+0.08
$AgF(s) + e^{-}$	\rightarrow	$Ag(s) + F^{-}(aq)$	+0.78
$AgCl(s) + e^{-}$	\rightarrow	$Ag(s) + Cl^{-}(aq)$	+0.22
$AgBr(s) + e^{-}$	\rightarrow	$Ag(s) + Br^{-}(aq)$	+0.07
$H^+(aq) + e^-$	\rightarrow	½ H ₂ (g)	0.00
$D^{+}(aq) + e^{-}$	\rightarrow	$^{1}/_{2}$ $D_{2}(g)$	-0.004
$AgI(s) + e^{-}$	\rightarrow	$Ag(s) + I^{-}(aq)$	-0.15

The symbol D denotes deuterium, which is heavy hydrogen, ²₁ H.

(a)	By considering electron transfer, state what is meant by the term <i>oxidising agent</i> .	
		(1)
(b)	State which of the two ions, H ⁺ (aq) or D ⁺ (aq), is the more powerful oxidising agent. Write an equation for the spontaneous reaction which occurs when a mixture of aqueous	
	H ⁺ ions and D ⁺ ions are in contact with a mixture of hydrogen and deuterium gas. Deduce	

the e.m.f. of the cell in which this reaction would occur spontaneously.

(3)

	(c)	Write an equation for the spontaneous reaction which occurs when aqueous F ⁻ ions ions are in contact with a mixture of solid AgF and solid AgCl. Deduce the e.m.f. of in which this reaction would occur spontaneously.	
		Equation	
		e.m.f	
			(2)
	(d)	Silver does not usually react with dilute solutions of strong acids to liberate hydrogeneous hyd	gen.
		(i) State why this is so.	
		(ii) Suggest a hydrogen halide which might react with silver to liberate hydrogen aqueous solution. Write an equation for the reaction and deduce the e.m.f. of in which this reaction would occur spontaneously.	
		Hydrogen halide	
		Equation	
		e.m.f	
			(4)
		(To	otal 10 marks)
10.	(a)	The following reaction occurs in aqueous solution.	
10.	(a)	·	
		$5S_2O_8^{2-} + Br_2 + 6H_2O \rightarrow 2BrO_3^{-} + 12H^+ + 10SO_4^{2-}$	
		Identify the reducing agent in this reaction and write a half-equation for its action.	
		Reducing agent	
		Half-equation	. (2)
			(2)

(b) The electrode potential for the half-equation

$$Co^{2+}(aq) + 2e \rightarrow Co(s)$$

is measured by reference to a standard hydrogen electrode.

(i)	State the temperature at which the standard electrode potential E^{\bullet} is measured, and give the concentration of $\text{Co}^{2+}(\text{aq})$ that must be used.	
	Temperature	
	Concentration	
(ii)	Electrode potentials are usually measured by reference to a secondary standard electrode. Identify a secondary standard electrode and give a reason why it is used rather than a standard hydrogen electrode.	
	Secondary standard electrode	
	Reason	(4)

ligands. Use, where appropriate, the data given below to answer the questions which follow. $[\text{Co}(\text{H}_2\text{O})_6]^{3+}(\text{aq}) + \text{e}^- \rightarrow [\text{Co}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) \quad E^{\bullet} = +1.81 \text{ V}$ \rightarrow H₂O(l) $E^{\bullet} = +1.23 \text{ V}$ $\frac{1}{2}$ O₂(g) + 2H⁺(aq) + 2e⁻ $[\text{Co(NH}_3)_6]^{3+}(\text{aq}) + \text{e}^- \rightarrow [\text{Co(NH}_3)_6]^{2+}(\text{aq}) \quad E^{\bullet} = +0.10 \text{ V}$ \rightarrow H₂(g) $E^{\bullet} = 0.00 \text{ V}$ $2H^{+}(aq) + 2e^{-}$ $[Co(CN)_6]^{4-}(aq)$ $E^{\bullet} = -0.80 \text{ V}$ $[Co(CN)_6]^{3-}(aq) + e^{-}$ (i) Which of the six cobalt species shown above is the most powerful oxidising agent? Identify a cobalt(II) species which cannot be oxidised by gaseous oxygen. (ii) (iii) Hydrogen is evolved when a salt containing the cobalt species $[Co(CN)_6]^4$ (aq) is reacted with a dilute acid. Use the electrode potentials given above to explain the formation of the hydrogen gas.

(4)

(Total 10 marks)

Cobalt in oxidation states +2 and +3 forms complex ions with water, ammonia and cyanide

(c)

11. The table below shows some values for standard electrode potentials. These data should be used, where appropriate, to answer the questions that follow concerning the chemistry of copper and iron.

Electrode reaction	E [⊕] /V
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	- 0.44
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+ 0.34
$O_2(g) + 2H_2O(1) + 4e^- \rightleftharpoons 4OH^-(aq)$	+ 0.40
$NO_{3}^{-}(aq) + 4H^{+}(aq) + 3e^{-} \rightleftharpoons NO(g) + 2H_{2}O(1)$	+ 0.96

(a)		e an equation to show the reaction that occurs when iron is added to a solution of a er(II) salt.	
	•••••		(1)
(b)		milar overall reaction to that shown in (a) would occur if an electrochemical cell was p between copper and iron electrodes.	
	(i)	Write down the cell diagram to represent the overall reaction in the cell.	
			(2)
	(ii)	Calculate the e.m.f. of the cell.	
			(1)
(c)	(i)	Use the standard electrode potential data given to explain why copper reacts with dilute nitric acid but has no reaction with dilute hydrochloric acid.	
			(3)
	(ii)	Write an equation for the reaction between copper and dilute nitric acid.	
			(2)

	(d)	in the	ough iron is a widely used metal, it has a major disadvantage in that it readily corroe presence of oxygen and water. The corrosion is an electrochemical process which is on the surface of the iron.	
		(i)	Use the standard electrode potential data given to write an equation for the overa reaction that occurs in the electrochemical cell set up between iron, oxygen and water.	ત્રી
				(1)
		(ii)	State, with a reason, whether the iron acts as the anode or cathode of the cell.	
				(2)
		(iii)	Predict and explain whether or not you would expect a similar corrosion reaction occur with copper in the presence of oxygen and water.	(2) n to
			(Total	(2) 14 marks)
12. (a	(a)		e the standard reference electrode against which electrode potentials are measured an electrode, state the conditions to which the term <i>standard</i> refers.	and,
		Name	e	
		Cond	ditions	
		••••••		(4)

(b) The standard electrode potentials for two electrode reactions are given below.

$$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$$

$$E^{\bullet} = +2.01 \text{ V}$$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

$$E^{\bullet} = +0.80 \text{ V}$$

(i) A cell is produced when these two half-cells are connected. Deduce the cell potential, E^{\bullet} , for this cell and write an equation for the spontaneous reaction.

 E^{\bullet} value

Equation

(ii) State how, if at all, the electrode potential of the $S_2O_8^{2-}/SO_4^{2-}$ equilibrium would change if the concentration of SO_4^{2-} ions was increased. Explain your answer.

Change, if any, in electrode potential

Explanation

(6) (Total 10 marks)

13. For **each** of the reactions listed below

- (i) identify which species, if any, are acting as oxidising agents;
- (ii) determine the oxidation states before and after reaction of any species that are oxidised;
- (iii) write half-equations, including state symbols, for all redox reactions that occur.

$$2Cu^{2+}(aq) + 4\Gamma(aq) \rightarrow 2CuI(s) + I_2(aq)$$

$$5H_2O_2(aq) + 2Mn^{2+}(aq) \rightarrow 2MnO_4^-(aq) + 6H^+(aq) + 2H_2O(l)$$

$$Cr_2O_{\,7}^{\,2-}\,(aq) + H_2O(l) \to \, 2CrO_{\,4}^{\,2-}\,\,(aq) + 2H^+(aq)$$

$$Cl_2(aq) + 2OH^-(aq) \rightarrow Cl^-(aq) + ClO^-(aq) + H_2O(l)$$

(11)

(Total 11 marks)