F321: Atoms, Bonds and Groups Acids

49 Marks

1.	A stu	udent carries out experiments using acids, bases and salts.	
	Calci	ium nitrate, Ca(NO ₃) ₂ , is an example of a salt.	
		student prepares a solution of calcium nitrate by reacting dilute nitric acid, HNC the base calcium hydroxide, $Ca(OH)_2$.) ₃ ,
	(i)	Why is calcium nitrate an example of a salt?	
			[1]
			-
	(ii)	Write the equation for the reaction between dilute nitric acid and calcium hydroxide. Include state symbols.	
			[2]
	(iii)	Explain how the hydroxide ion in aqueous calcium hydroxide acts as a base when it neutralises dilute nitric acid.	
			[1]
		[Ті	otal 4 marks

		student finds that 25.00 cm 3 of 0.0880 mol dm $^{-3}$ aqueous sodium hydroxide, H, is neutralised by 17.60 cm 3 of dilute sulfuric acid, H $_2$ SO $_4$.	
		$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$	
	(i)	Calculate the amount, in moles, of NaOH used.	
		answer = mol	[1]
	(ii)	Determine the amount, in moles, of H ₂ SO ₄ used.	
		answer = mol	[1]
	(iii)	Calculate the concentration, in mol dm ⁻³ , of the sulfuric acid.	
		answer = mol dm ⁻³	[1]
(b)	cryst	carrying out the titration in (a), the student left the resulting solution to callise. White crystals were formed, with a formula of Na_2SO_4 • x H_2O and a r mass of 322.1 g mol ⁻¹ .	
	(i)	What term is given to the '•x H ₂ O' part of the formula?	
	(ii)	Using the molar mass of the crystals, calculate the value of \mathbf{x} .	[1]
		answer =[Total 6	[2] marks]

(a) A student carries out a titration to find the concentration of some sulfuric acid.

2.

3.		nonium compounds such as ammonium sulfate, $(NH_4)_2SO_4$, can be used as isers.	
	(i)	Write a balanced equation to show how ammonium sulfate could be formed by the reaction between aqueous ammonia and sulfuric acid.	
			[1]
	(ii)	Ammonium sulfate is an example of a salt formed when an acid is neutralised by a base.	
		Explain what is meant by the term salt.	
			[1]
	(iii)	Why is ammonia acting as a base in this neutralisation?	
			[1]
	(iv)	What is the relative formula mass of (NH ₄) ₂ SO ₄ ?	
		Give your answer to one decimal place.	
		[Total 4 ma	[1] arks]
4.	Epso	om salts can be used as bath salts to help relieve aches and pains.	
	Eps	om salts are crystals of hydrated magnesium sulfate, MgSO ₄ • x H ₂ O.	
		imple of Epsom salts was heated to remove the water. 1.57 g of water was oved leaving behind 1.51 g of anhydrous $MgSO_4$.	
	(i)	Calculate the amount, in mol, of anhydrous MgSO ₄ formed.	
		amount = mol	[2]

	amount =n	nol [1]
	(iii) Calculate the value of x in MgSO ₄ • x H ₂ O.	
	x =	 [1] [Total 4 marks]
5.	Calcium oxide reacts with water and with nitric acid.	[10tal 4 marks]
	State the formula of the calcium compound formed when:	
	(i) calcium oxide reacts with water,	
	(ii) calcium oxide reacts with nitric acid	[1] [1] [Total 2 marks]
6.	Calcium and its compounds, have properties typical of Group 2 in the Periodic	「able.
	Calcium carbonate, CaCO ₃ , reacts with acids such as nitric acid.	
	A student neutralised 2.68 g of CaCO ₃ with 2.50 mol dm ⁻³ nitric acid, HNO ₃ .	
	The equation for this reaction is shown below.	
	$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(l)$	
	(i) Determine the amount, in mol, of CaCO ₃ reacted.	
	amount = n	nol [2]

Calculate the amount, in mol, of ${\rm H_2O}$ removed.

(ii)

	(ii)	Calculate the volume, in ${\rm cm}^3$, of ${\rm CO}_2$ produced at room temperature and pressure.	
		volume =cm ₃	
			[1]
	(iii)	Calculate the volume of 2.50 mol \mbox{dm}^{-3} HNO $_{3}$ needed to neutralise 2.68 g of CaCO $_{3}.$	
		volume =cm ³ [Total 5 ma	[2] arks]
7.	Old :	samples of magnesium oxide become contaminated with magnesium carbonate.	
	(i)	Suggest how this contamination takes place.	
			[1]
	(ii)	A student added an excess of hydrochloric acid to an old sample of magnesium oxide that is contaminated with magnesium carbonate.	
		State two observations that the student would make.	
			[2]

	(iii)	Explain, with the aid of equations, why the resulting solution contained only dissolved compound of magnesium.	one
			[3]
_			[Total 6 marks]
8.	Both	calcium carbonate, CaCO ₃ , and calcium oxide, CaO, are white solids.	
		e hydrochloric acid, HC l , can be used to identify whether a sample of white s O $_3$ or CaO.	solid is
	(i)	Write equations, including state symbols, for the reaction of HC/ with CaCC the reaction of HC/ with CaO.) ₃ and
	(ii)	How would observation of the reactions with hydrochloric acid allow the identification of the white solid?	[3]
		CaCO ₃	
		CaO	
			[1]
			[Total 4 marks]
9.		nall amount of solid magnesium oxide, MgO, was reacted with excess dilute ochloric acid.	
	(i)	Define an acid.	
			 [1]
	(ii)	Write a balanced equation for this reaction.	
			[1]

[Total 2 marks]

10.	Chewing chalk has been used for many years to combat excess stomach acid and indigestion tablets often contain calcium carbonate, CaCO ₃ . Suggest, with the aid of an equation, how these tablets work.					
	•••••	ח	otal 2 marks]			
11.	Ammonia reacts with sulphuric acid, as shown in the equation below.					
		$2NH_3(g) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$				
	(i)	Complete the statement below to describe how ammonia is behaving in this reaction.				
		Ammonia is behaving as a because				
			[2]			
	(ii)	State one important use for the compound $(NH_4)_2SO_4$.				
			[1]			
	(iii)	Apart from the manufacture of $(NH_4)_2SO_4$, state one other large-scale use o ammonia.	f			
		רן	[1] ⁻ otal 4 marks]			
12.		rogen iodide dissolves in water to give a solution of hydro-iodic acid, HI(aq). Its	3			
	(i)	A length of magnesium ribbon is added to hydrochloric acid.				
		Describe what you would see in this reaction.				
			[1]			

	(ii)	Write a balanced equation for this reaction.	
			[2] [Total 3 marks]
13.	Hydr	rochloric acid is a strong acid.	
	Wha	at is meant by the term acid?	
			 [Total 1 mark]
14.	Hydr	rochloric acid reacts with a solution of sodium carbonate.	
	(i)	Write appropriate state symbols in the equation for this reaction shown be	low.
		$2HC l \ldots \ldots + Na_2 CO_3 \ldots \ldots \rightarrow 2NaC l \ldots \ldots + CO_2 \ldots \ldots + H_2 O \ldots \ldots$	[1]
	(ii)	State what you would see to indicate that the reaction was taking place.	1.1
			[Total 2 marks]