Question	Кеу	Marks	Guidance
1	В	1	
2	С	1	
3	С	1	
4	D	1	

Q	uesti	on	Answer	Marks	Guidance
5	(a)	(i)	HO OH HO OH V	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstituted compound with <i>tert</i> -butyl groups adjacent
		(ii)	(The student's friend is correct because)	3	
			the lone pair of electrons on the oxygen atom(s) \checkmark is donated to/partially delocalised into the π system \checkmark		ALLOW "the oxygen p-orbital overlaps with " ALLOW diagrammatic answer for 1^{st} and 2^{nd} " marks: 1^{st} mark: π system OR 6×p orbitals shown 2^{nd} mark: O lone pair OR O p-orbital AND interaction
			making quinol more susceptible to electrophilic attack ✓ 		ALLOW undergoes electrophilic substitution more easily if 1 st and 2 nd marks achieved through diagram, conclusion must refer to diagram for 3 rd mark
	(b)	(i)	step 1 = (conc.) H_2SO_4 AND CH_3CH_2OH \checkmark	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Question	stion Answer		Guidance
(ii)	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	Total	7	

Q	Question		Answer	Marks	Guidance
6	(a)	(i)	Generation of electrophile	5	ANNOTATE ANSWER WITH TICKS AND CROSSES
			HNO ₃ + H ₂ SO ₄ \longrightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ \checkmark Electrophilic substitution		ALLOW HNO ₃ + 2H ₂ SO ₄ \rightarrow H ₃ O ⁺ + 2HSO ₄ ⁻ + NO ₂ ⁺
			Curly arrow from π-bond to NO ₂ ⁺ ✓		ALLOW $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$ then $H_2NO_3^+ \rightarrow H_2O + NO_2^+$ ALLOW $^+NO_2 \text{ OR } NO_2^+$
			NO2+		First curly arrow must come from the ring to NO ₂ ⁺
			Correct intermediate ✓		DO NOT ALLOW the following intermediate:
			Curly arrow back from C-H bond to reform π -ring AND H ⁺ as product \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		$\pi-ring should cover approximately 4 of the 6 sides of the benzene ring structure AND the correct orientation, i.e. gap towards C with NO2 ALLOW + sign anywhere inside the 'hexagon' of intermediate$

	Mark Scheme				
Question			Guidance		
(ii)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Outlines the main steps of recrystallisation to produce a pure sample of 3-nitrobenzoic acid from the impure solid. AND Calculates correct percentage yield of 3-nitrobenzoic acid. AND Method of checking purity to include comparison to relevant data. A well-structured response with the steps for recrystallisation and the determination of purity being given in the correct order. Correct use of terminology throughout. Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with very few omissions. The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately. Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points. OR 	6	Indicative scientific points, with bulleted elements, may include: 1. Purification • Recrystallisation • Dissolve impure solid in minimum volume of hot water/solvent • Cool solution and filter solid • Wash with cold water/solvent and dry 2. Percentage yield • $n(\text{benzoic acid}) \text{ used } = \frac{4.97}{122} = 0.0407 \text{ (mol)}$ • $n(\text{benzoic acid}) \text{ used } = \frac{4.85}{167} = 0.0290 \text{ (mol)}$ • $percentage \text{ yield } = \frac{0.0290}{0.0407} \times 100 = 71.3 \text{ (\%)}$ ALLOW 71 to calculator value of 71.29001554 correctly rounded. CHECK for extent of errors by ECF Alternative correct calculation may calculate theoretical mass of 3-nitrobenzoic acid that can be produced as $0.0407 \times 167 = 6.80 \text{ (g) followed by:}$ percentage yield $= \frac{4.85}{6.80} \times 100 = 71.3 \text{ (\%)}$ Calculation must attempt to calculate $n(\text{benzoic acid})$ in mol.		

Questi	ion	Answer	Marks	Guidance
		 Explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order. Purification step is unclear with few scientific terms and little detail, e.g. just 'recrystallise'. Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products. Purity check specifies a method but this is unclear with little detail, e.g. take melting point. 0 marks No response or no response worthy of credit. 		 Obtain melting point Compare to known values Pure sample will have a (sharp) melting point very close to data book value ALLOW alternative approach based on spectroscopy or TLC Spectroscopy Run an NMR/IR spectrum Compare to (spectral) database Spectrum of pure sample will contain same peaks and not others TLC Run a TLC Compare (<i>R</i>_f value) to known data Pure sample will have a very similar <i>R</i>_f
(b)	(i)	Phenol is the most easily nitrated/ most reactive AND Benzoic acid is the least easily nitrated /least reactive ✓	1	Response must give rank order of reactivity e.g. nitration becomes more difficult from phenol (to benzene) to benzoic acid OR nitration becomes easier from right to left in the table
	(ii)	Reactivity of phenol a (lone) pair of electrons on O is (partially) delocalised/donated into the π -system / ring \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW the electron pair in the p orbitals of the O atom becomes part of the π -system / ring ALLOW diagram to show movement of lone pair into ring

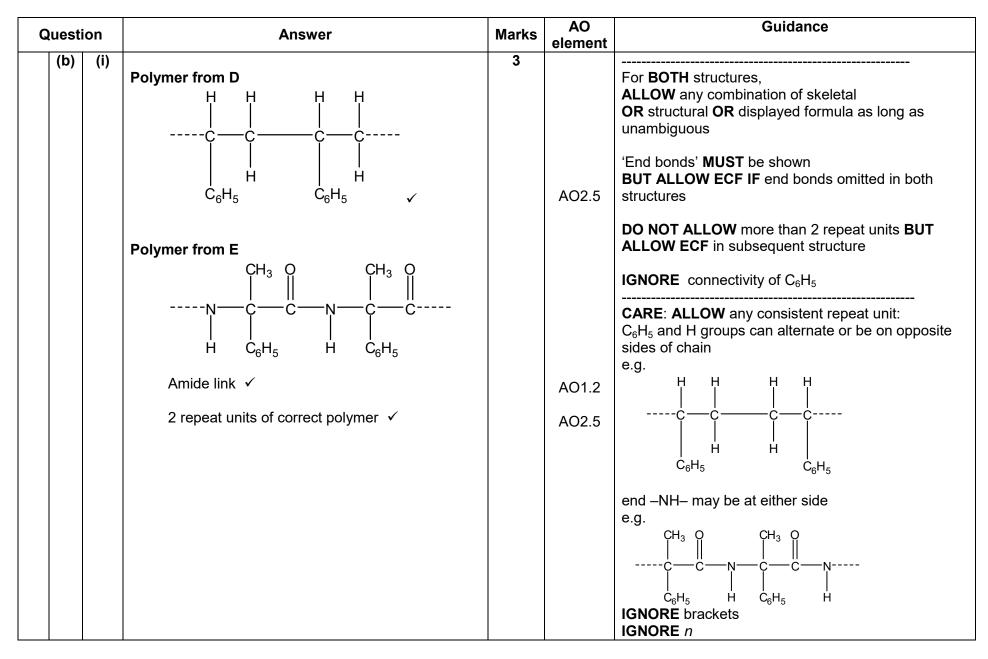
Question	Answer	Marks	Guidance
	Reactivity of benzoic acid The –COOH group on benzoic acid is an electron withdrawing group ✓		ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into π-system / ring IGNORE activating and deactivating.
	 Links electron density in π-bond to reactivity In phenol electron density is higher AND The ring is more susceptible to attack OR In benzoic acid electron density is lower AND The ring is less susceptible to attack ✓ 		 ALLOW the following alternatives for susceptibility to attack: phenol attracts electrophiles / NO₂⁺ more phenol polarises electrophiles / NO₂⁺ more benzoic acid attracts electrophiles / NO₂⁺ less benzoic acid polarises electrophiles / NO₂⁺ less
(C) (i)	Bromination: Br₂ AND A/Br₃/FeBr₃/Fe ✓ Intermediate	3	 ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst

Mark Scheme					
Question	Answer	Marks	Guidance		
	NO ₂		ALLOW Kekulé structure		
			IGNORE names (question asks for formulae)		
	Br✓		IGNORE reaction conditions even if incorrect		
	Reduction : Sn AND (concentrated) HC <i>l</i> ✓		IGNORE 'dilute' for HCl IGNORE H ₂		
			IGNORE NaOH if seen as a reagent to convert nitro group into amine		
			e.g 'Sn/(concentrated) HC/ then NaOH' scores the mark		
(ii)	NH_2 is 2,4 directing \checkmark	3	IGNORE references to electron donating/withdrawing groups		
	Products (1 mark for each): NH ₂ NH ₂ NH ₂		ALLOW $-NH_2$ activates the ring causing the new group to join at positions 2 and 4.		
	Br		ALLOW ortho and para directing for 2,4 directing		
			IGNORE 6-directing		
			ALLOW Kekulé structure		
	→ Br ✓ ✓		IGNORE names		
	Total	21			

Question	Answer	Marks	Guidance
7	C	1	
8	Α	1	

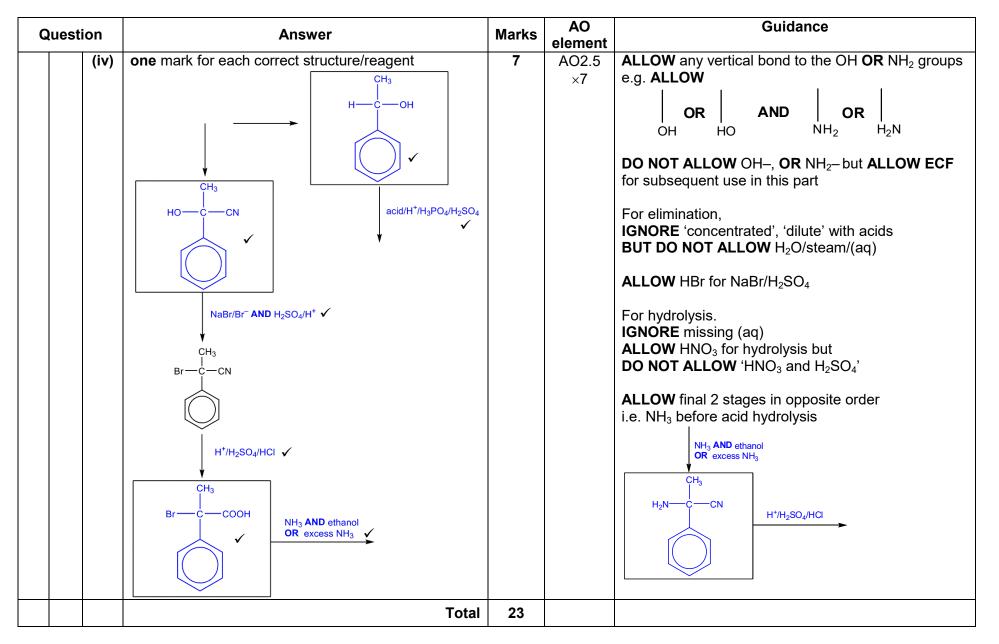
Q	Question		Answer			Guidance	
9	(a)	(i)	 Number of peaks 2-nitrophenol AND 3-nitrophenol have peaks/environments/types of carbon √ 4-nitrophenol has four peaks/environe carbon √ Statement 	/	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/ types of carbon IGNORE chemical shifts	
			4-nitrophenol can be distinguished OR 2-nitrophenol and 3-nitrophenol canno	ot be distinguished \checkmark		DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon	
		(ii)	(In phenol) a (lone) pair of electrons o delocalised/donated into the π-system	n / ring ✓	3	ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π -system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π -system / ring IGNORE activating	
			Electron density increases/is higher (t ORA (phenol) is more susceptible to electro OR (phenol) attracts/accepts electrophile/ OR (phenol) polarises electrophile/HNO ₃ ORA	pphilic attack HNO_3 more		IGNORE charge density IGNORE electronegativity IGNORE phenol reacts more readily (<i>no reference to</i> <i>electrophile</i>) ALLOW NO ₂ ⁺ for electrophile	

Question	Answer	Marks	Guidance
(b)	Curly arrow from π -bond to S in SO ₃ AND curly arrow from the S=O bond to O atom \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	3	ANNOTATE WITH TICKS AND CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the S of SO ₃ AND • start from, OR close to circle of benzene ring \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} 2nd curly arrow must start from, OR be traced back to, any part of S=O bond and go to O \overrightarrow{S} \overrightarrow{S} \overrightarrow{S} \overrightarrow{S} ALLOW 2nd curly arrow from S=O to any O in SO ₃ Intermediate must have correct SO ₃ ⁻ structure fully displayed


Question	Answer	Marks	Guidance
	Correct intermediate \checkmark Curly arrow from C-H bond to reform π -ring \checkmark		DO NOT ALLOW the following intermediate: T_{+} T_{+} T_{+} T_{+} T_{-} π -ring must cover more than half of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with SO ₃ ⁻ ALLOW + sign anywhere inside the 'hexagon' of the intermediate. DO NOT ALLOW mark for intermediate if CH ₃ is missing curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon'
	Tota	l 9	

Question	Answer	Marks	AO	Guidance
Quootion		Marks	element	Culdanos
10	C	1	AO1.2	
11	Α	1	AO1.1	

OCR (A) Chemistry A-Level - Aromatic Compounds


Q	Question		Answer	Marks	AO element	Guidance	
12	(a)	(i)	Similarities Orbital overlap (sideways) overlap of p orbitals \checkmark π bond π bond/system/ring above and below (bonding (C) atoms/ring/plane) \checkmark	3	AO1.1 × 3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW diagram showing orbital overlap e.g. porbital $G = G$ $G = G$ OR f = G = G $G = Gf = G = Gf = G$	

Question	Answer	Marks	AO element	Guidance
	Difference Kekule has: alternating π bonds OR 3 π bonds / localised (π electrons) / overlap in one direction / 2 electrons in π bond AND Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons in π bond /			ALLOW diagram showing π bond in both Kekule AND delocalised models e.g AND \leftarrow
(ii)	 Any 2 pieces of evidence from (✓ ✓) Bond length (C–C) bond length is between single (C–C) and double bond (C=C) OR all (C–C) bond lengths are the same AH hydrogenation △H hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bromination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene reacts by substitution 	2	AO1.1 ×2	ALLOW (C–C) bond enthalpy is between single (C– C) and double bond (C=C) OR all (C–C) bond enthalpies are the same IGNORE enthalpy of hydration Benzene is unreactive is not sufficient (<i>no comparison to alkene</i>) For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AlCl ₃ , FeBr ₃

Question	Answer	Marks	AO element	Guidance	
(ii)	 D Addition / polyalkene AND E: Condensation / polyamide ✓ 	1	AO1.1	DO NOT ALLOW 'additional'	
	Formation of electrophile $CH_3COCI + AICI_3 \rightarrow CH_3-C^+=O + AICI_4^- \checkmark$ Mechanism Curly arrow from π -bond to $CH_3C^+=O \checkmark$ $H_3C - c = O$ $H_3C - c = O$	5	AO2.5 AO2.5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW '+' charge anywhere on CH ₃ C ⁺ O <i>i.e.</i> CH ₃ CO ⁺ NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C=O AND • start from, OR close to circle of benzene ring $W_{2}^{-} = 0 W_{2}^{-} = $	

Question	Answer	Marks	AO element	Guidance
	Correct intermediate ✓		AO3.1	
	Curly arrow from C–H bond to reform π -ring \checkmark H \downarrow COCH ₃ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		AO2.5	DO NOT ALLOW the following intermediate: Γ π -ring should cover approximately 4 of the 6 sides of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with COCH ₃ ALLOW + sign anywhere inside the 'hexagon' of intermediate
	Regeneration of catalyst $H^+ + AlCl_4^- \longrightarrow AlCl_3 + HCl \checkmark$		AO1.2	curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon' $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

	Questior	Answer	Marks	AO element	Guidance
13	(a)	$CO_3^{2-} + H_2O \rightarrow OH^- + HCO_3^-$ OR $CO_3^{2-} + H_2O \rightarrow 2OH^- + CO_2 \checkmark$	1	AO1.2	ALLOW $CO_3^{2^-} + 2H_2O \rightarrow 2OH^- + H_2CO_3$ IGNORE state symbols ALLOW inclusion of Na ⁺ as spectator ion, e.g. $2Na^+ + CO_3^{2^-} + H_2O \rightarrow 2OH^- + 2Na^+ + CO_2$
					IGNORE Na ₂ CO ₃ + H ₂ O \rightarrow 2NaOH + CO ₂ <i>lonic equation required</i> IGNORE equation with H ⁺ or H ₃ O ⁺ e.g. CO ₃ ²⁻ + H ⁺ \rightarrow OH ⁻ + CO ₂ <i>Question asks for reaction with H</i> ₂ O
	(b)	 Acid/H⁺/HCI reacts with OR protonates benzoate / C₆H₅COO⁻ carboxylate / salt (to form benzoic acid) ✓ 	1	AO2.3	$\begin{array}{l} \textbf{ALLOW} \text{ suitable equation, e.g.} \\ C_6H_5COO^- + H^+ \rightarrow C_6H_5COOH \\ \textbf{IGNORE} \text{ responses purely in terms} \\ \text{of neutralisation of alkali, e.g.} \\ \text{Acid/H}^+/\text{HCI neutralises /} \\ \text{reacts with/removes alkali / OH}^- / \\ \text{CO}_3^{2^-} / \text{Na}_2\text{CO}_3 \end{array}$
	(c)	$C_6H_5CH_2OH + 2[O] \rightarrow C_6H_5COOH + H_2O \checkmark$	1	AO2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $C_7H_8O + 2[O] \rightarrow C_7H_6O_2 + H_2O$

Question	Answer	Marks	AO element	Guidance
(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marks	3		ALLOW ECF for each step
	Theoretical moles $n(C_6H_5COOH) \text{ OR } n(C_6H_5CH_2OH)$ $= \frac{4.00 \times 1.04}{108.0} \text{ OR } 0.0385 (mol) \checkmark$ Actual moles $n(C_6H_5COOH)$ $= \frac{1.59}{122.0} \text{ OR } 0.013(0) (mol) \checkmark$ % yield $= \frac{0.0130}{0.0385} \times 100$ $= 33.8\% \text{ OR } 33.9 (3 \text{ sig fig}) \checkmark$ Answer depends on some intermediate roundings to $3SF$		AO2.8 ×1 AO2.8 ×1 AO1.2	Calculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass 1. Theoretical moles = 0.0385 mol 2. Mass = $0.0385 \times 122.0 = 4.70$ g 3. % yield = $\frac{1.59}{4.70} \times 100 = 33.8\%$ Common errors $35.2\% \rightarrow 2$ marks • From $\frac{4.00}{108} = 0.0370$ (no use of density) 36.5 OR $36.6\% \rightarrow 2$ marks • $\frac{4.00/1.04}{108} = \frac{3.846}{108} = 0.0356$ (\div density instead of \times density)

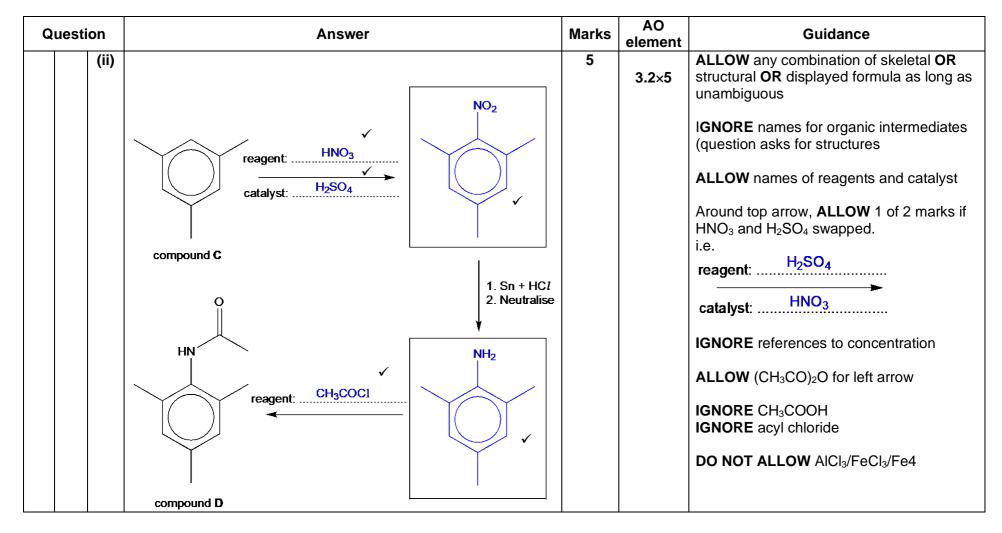
Questic	n Answer	Marks	AO element	Guidance
(e)	Dissolve in the minimum quantity of hot water/solvent ✓ Cool AND Filter AND (leave to) dry ✓ <i>All three needed</i>	2	AO3.3 ×2	 ALLOW any solvent DO NOT ALLOW use of drying agent (e.g. MgSO₄) IGNORE Initial filtering hot filtration to remove insoluble impurities
	Total	8		

	Question		Answer	Marks	AO element	Guidance	
14	(a)	(i)	4-chloro-3,5-dimethylphenol ✓ CARE: Look for dimethyl	1	AO1.2	 ALLOW 3,5-dimethyl-4-chlorophenol ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenol ALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol ALLOW name based on benzene, if unambiguous e.g.1-chloro-4-hydroxy-2,6-dimethylbenzene DO NOT ALLOW meth OR methy 	
		(ii)	5 ✓	1	AO2.5		
		(iii)	Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na ₂ CO ₃ /CO ₃ ^{2−} /carbonate ✓	2	AO1.2 AO2.3	DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (<i>name asked for</i>) ALLOW Add bromine AND white precipitate ALLOW FeCl ₃ AND violet/blue colour	

Question	Answer	Marks	AO element	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71 × 10 ⁻¹⁰ , award FOUR calculation marks CARE Separate mark for equation	5		
	Equation (1 mark) C ₈ H ₉ ClO ⇔ H ⁺ + C ₈ H ₈ ClO ⁻ ✓ <i>Molecular formulae required (atoms in any order)</i>		AO1.2 ×1	ALLOW → for \rightleftharpoons DO NOT ALLOW C ₈ H ₈ ClOH in equation i.e. C ₈ H ₈ ClOH \rightleftharpoons H ⁺ + C ₈ H ₈ ClO ⁻ If equation is omitted, ALLOW equation mark for a correct K_a expression with molecular formula [H ⁺] [C ₉ H ₉ ClO ⁻]
	$\begin{bmatrix} C_{8}H_{9}CIO \end{bmatrix} \text{ calculation (2 marks)} \\ \text{Molar mass } C_{8}H_{9}CIO = 156.5 \text{ (g mol}^{-1}) \checkmark \\ \text{ONLY correct answer} \\ \begin{bmatrix} C_{8}H_{9}CIO \end{bmatrix} = \frac{4.8 \times 10}{156.5} \text{ OR } 0.3067 \text{ (mol dm}^{-3}) \checkmark \\ \text{Subsumes mark for molar mass} = 156.5 \\ \textbf{K}_{a} \text{ calculation (2 marks)} \\ \begin{bmatrix} H^{+} \end{bmatrix} = 10^{-5.14} = 7.244 \times 10^{-6} \text{ (mol dm}^{-3}) \checkmark \\ \textbf{K}_{a} = \frac{(7.244 \times 10^{-6})^{2}}{0.3067} = 1.71 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark \\ \end{bmatrix}$		AO2.8 ×4	i.e. $\frac{[H^+][C_8H_8CIO^-]}{[C_8H_9CIO]}$ NO ECF from an incorrect formula in equation ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded ALLOW 7.24 × 10 ⁻⁶ up to calculator value: 7.244359601 × 10 ⁻⁶ correctly rounded ALLOW 2 SF (1.7 × 10 ⁻¹⁰) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding)
				COMMON ERRORS 2.36 \times 10 ⁻⁵ 3/4 calculation marks No squaring of 7.24 \times 10 ⁻⁶

Question	Answer	Marks	AO element	Guidance
(b) (i)	× ✓ OH	1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *
(ii)	MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS Requirement for E/Z isomerism 2 marks C=C/double bond ✓ Each C (in C=C) is attached to (two) different groups/atoms ✓ Identification as E- or Z- isomer 2 marks E/Z isomerism linked to (high) priority groups ✓ Z- isomer AND groups are on same side OR the ring carbons ✓ Reason why other E/Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓	4	AO1.2 ×2 AO2.5 ×2	IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number <i>ORA</i> <i>Award BOTH identification marks for:</i> <i>Z</i> - isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' <i>E</i> isomer is impossible' IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides

Question	Answer	Marl	AO element	Guidance
(iii)	First group: Reagent AND Functional group: Alkene OR cycloalkene Examples of reagents Br2 or other halogen, HBr, H2 AND Ni (cata H2O(g)/steam AND H ⁺ (catalyst) Organic product for reagent with C=C in α-terpi ALLOW product from H2 or H2O if H ⁺ catalyst had omitted from reagent.	lyst), neol ✓	AO3.2 ×4	CONTACT TEAM LEADER FOR OTHER REACTIONS ALLOW GROUPS EITHER WAY ROUND IN BOXES Functional group MUST be named DO NOT ALLOW UV with halogens ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW addition of HBr/ H ₂ O either way across C=C
	Reagent AND Functional group: (Tertiary) alcohol ✓ Examples of reagents NaBr/KBr/Br ⁻ AND acid/H ⁺ OR HBr Acid/H ⁺ (catalyst)			ALLOW ANY HALIDE , i.e. Cl ⁻ , Br ⁻ , l ⁻ ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW HBr for H ⁺ and Br ⁻
	CH_3COOH AND acid/H ⁺ (catalyst) (esterified CH_3COOCOCH_3 (esterified CH_3COCI) (esterified CH_3COCI) (esterified contact)	cation)		ALLOW name or formula of any carboxylic acid or acyl chloride for esterification
	Organic product for reagent with OH in α-terpin ALLOW product if catalyst omitted from reagent			ALLOW Na \rightarrow product with –ONa OR –O ⁻ DO NOT ALLOW Cr ₂ O ₇ ^{2–} /H ⁺ (tertiary alcohol)
		Total 18		


Question	Answer	Marks	AO element	Guidance
15	A	1	1.1	
16	C	1	1.2	

Question	Answer	Marks	AO element 2.5×2	Guidance
17 (a) (i)	CI CI CI CI CI CI CI CI CI CI CI CI CI C	2		
 (ii) Reactivity of B in B electrons are localised OR in B π-bond is localised ✓ Reactivity of C in C electrons are delocalised OR In C π-system / ring is delocalised In B, electron density is higher AND B is more susceptible to electrophilic attack OR B attracts/accepts the electrophile/Cl₂ more OR B polarises the electrophile/Cl₂ more ✓ ORA 		3	1.1×3	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine

OCR (A) Chemistry A-Level - Aromatic Compounds

Question	Answer	Marks	AO element	Guidance
(iii)	Generation of electrophile AICl ₃ + Cl ₂ \rightarrow AICl ₄ ⁻ + Cl ⁺ \checkmark	5	1.2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $FeCl_3 + Cl_2 \rightarrow FeCl_4^- + Cl^+$ ALLOW use of Fe
	Attack of CI ⁺			NOTE : curly arrows can be straight, snake- like, etc. but NOT double-headed or half- headed arrows
	Curly arrow from π -bond to Cl ⁺ \checkmark		1.2	 1st curly arrow must start from, OR close to, circle of benzene ring
	Intermediate and organic product H Cl $+$ H^+			DO NOT ALLOW following intermediate:
	Correct intermediate ✓		2.5	
	Curly arrow from C–H bond to reform π -ring \checkmark		1.2	π -ring must cover 4 of the 6 sides of the benzene ring AND correct orientation, <i>i.e.</i> gap towards C–Cl
	Regeneration of catalyst H ⁺ + AICl ₄ ⁻ \rightarrow AICl ₃ + HCl \checkmark		1.2	ALLOW + sign anywhere inside the 'hexagon' of the intermediate.

Ques	tion		Answer		Marks	AO element	Guidance
							 IGNORE partial charges on the chlorine in the intermediate DO NOT ALLOW mark for intermediate if any CH₃ is missing Curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon' Image: Allow use of AlCl₄⁻ in the mechanism ALLOW ECF for regeneration of an incorrect metal chloride catalyst e.g. AgCl₃
(b))	$3C_{3}H_{6}O \rightarrow C_{9}H_{12} + 3H_{2}O$ molecular formulae of $C_{3}H_{6}O$ AND $C_{9}H_{12} \checkmark$ $H_{2}O$ as by-product \checkmark correct balanced equation \checkmark			3	2.6 2.5 2.6	
(c)) (i)	Number of peaks	Compound C 3 ✓	Compound D 8 ✓	2	3.2	

