1	Alanine,	serine	and	proline	are	α -amino	acids

alanine	serine	proline
H ₂ NCH(CH ₃)COOH	H ₂ NCH(CH ₂ OH)COOH	N COOH

(a) (i) Alanine and serine react together to form two different dipeptides.

(ii) The isoelectric points of alanine and serine are shown below.

alanine, pH = 6.0

serine, pH = 5.6

Draw the structures of the ions formed at the following pH values.

structure of alanine ion at pH 6.0	structure of serine ion at pH 10.0
MatheTutor.com	

o)	ition of serine was shake	en with a few drops	of D ₂ O. The solution w
	lete the table to predict the	ne ¹ H NMR spectrum	of serine after the addit
	¹ H N	NMR spectrum for se	erine
	Chemical shift, δ/ppm	Relative peak area	Splitting pattern

(iii) Proline can polymerise to form poly(proline).

Draw the structure of the repeat unit in poly(proline).

(c) Enalapril is a drug used in the treatment of high blood pressure.

enalapril

(i)	On the structure above, mark each chiral centre with an asterisk (*).	[1]
(ii)	Suggest two benefits of using single stereoisomers in the synthesis of drugs su enalapril.	ch as
		[2]

((iii)	Enala	oril is	broken	down	in	the	body	bv	acid	hvdrol	/sis
١	ш		כו וויק	DIONCII	acviii	111	uic	DOG	ν	acia	i i y ai oi y	y 010.

Draw the structures of the three organic products of the acid hydrolysis of enalapril.

			-
	J		
		I	

[4]

(iv) A scientist hydrolysed enalapril in the laboratory. The scientist then analysed the mixture of products using GC–MS.

Explain how GC–MS enables the products to be identified.

[Total: 15]

- **2** Benzene and other arenes can be chlorinated to produce chloroarenes which are used in the manufacture of pesticides, drugs and dyes.
 - (a) Chlorobenzene, C_6H_5Cl , is formed by the reaction of benzene and chlorine in the presence of a suitable catalyst, such as $AlCl_3$.

$$\mathrm{C_6H_6} \quad + \quad \mathrm{C}\mathit{l}_2 \quad \rightarrow \quad \mathrm{C_6H_5C}\mathit{l} \quad + \quad \mathrm{HC}\mathit{l}$$

Outline the mechanism for the formation of chlorobenzene from benzene.

Show how $AlCl_3$ behaves as a catalyst.

(b) Chlorobenzene reacts with trichloroethanal, ${\rm C}l_3{\rm CCHO}$, to produce the pesticide DDT.

(i) Construct an equation for the reaction of chlorobenzene with trichloroethanal to form DDT.

	(ii)	Predict the number of peaks in the ¹³ C NMR spectrum of DDT.	
			[1]
(c)	Chl	orobenzene can be nitrated to form a mixture of products.	
	Sug	ggest why the reaction forms a mixture of products.	
			• • • •

(d)	Explain why phenol reacts more readily with chlorine than benzene reacts with chlorine.
	In your answer, you should use appropriate technical terms, spelled correctly.
	[3]
	[Total: 13]

A st	tudent was given three compounds, an aldehyde, a ketone, and a carboxylic acid.
(a)	The student carried out the same two chemical tests on each compound. This allowed her to distinguish between all three compounds.
	Describe two suitable tests that the student could have used.
	Show how the observations would allow her to distinguish between the compounds.
	[4]
(b)	Explain how the student could use infrared spectroscopy to confirm which compound is a carboxylic acid.
	[1]
(c)	The aldehyde has the molecular formula $C_5H_{10}O$.
	The 1 H NMR spectrum of the aldehyde contains a doublet at δ = 0.9 ppm with a relative peak area of six compared with the aldehyde proton.
	Analyse this information to deduce the structure of the aldehyde. Explain your reasoning.
Dh. c-!	[3]
-riysi	csAndMathsTutor.com

- (d) The ketone also has the molecular formula C₅H₁₀O. There are three structural isomers of this formula that are ketones.
 - (i) Two of these isomers are shown below.

Draw the structural formula of the third structural isomer in the box below.

- (ii) The ¹³C NMR spectrum of the ketone given to the student is shown below.
 - · Use the spectrum to identify the ketone. Explain your reasoning.
 - Identify the carbon responsible for the peak at δ = 210 ppm.

[Total: 12]

A c	hemi	st prepares and analyses some esters.
(a)		chemist prepares an ester of propan-2-ol, $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{CH_3}$, by reacting $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{CH_3}$ ethanoic anhydride, $(\mathrm{CH_3CO})_2\mathrm{O}$.
		ng structural formulae, write an equation for the reaction of propan-2-ol and ethanoic ydride.
		[2]
(b)	A sa	ample contains a mixture of two esters contaminated with an alkane and an alcohol.
		chemist attempts to separate the four organic compounds in the mixture using gas matography, GC.
	The pha	column in the gas chromatograph contains a liquid alkane which acts as the stationary se.
	(i)	How does a liquid stationary phase separate the organic compounds in a mixture?
		[1]
	(ii)	Suggest how well these four compounds would be separated using the alkane stationary phase. In your answer, include some indication of the length of the retention times.
		Explain your answer.
		[2]

4

(c) GC is often used together with other techniques, such as mass spectrometry, MS, and NMR spectroscopy, to provide a far more powerful analytical tool than GC alone.

One of the esters in a perfume is separated by GC and then analysed.

The results are shown below.

Elemental analysis by mass

C, 66.63%; H, 11.18%; O, 22.19%

Mass spectrum

Proton NMR spectrum

The numbers by each peak are the relative peak areas.

,	n your answer, you should use appropriate technical terms, spelled correctly.
•	
•	
•	
•	
•	
•	
•	

[Total: 15]