Rings, Polymers & Analysis - Spectroscopy 1. An industrial chemist discovered five bottles of different chemicals (three esters and two carboxylic acids) that were all labelled $C_5H_{10}O_2$. The different chemicals had the structural formulae below. $CH_3CH_2COOCH_2CH_3$ $(CH_3)_3CCOOH$ $CH_3COOCH(CH_3)_2$ $(CH_3)_2CHCOOCH_3$ (a) The chemist used both infrared and ¹³C NMR spectroscopy to identify the two carboxylic acids and to distinguish between them. | distinguished? | |----------------| (b) The chemist analysed one of the esters by ¹H NMR spectroscopy. The spectrum is shown below. [3] Analyse the splitting patterns and the chemical shift values to identify the ester. Give your reasoning. | In your answer, you should use appropriate technical terms, spelt correctly. | | |--|-----------------| [6] | | | [Total 9 marks] | PhysicsandMathsTutor.com **2.** Unknown compounds are often identified by n.m.r. spectroscopy. Part of the n.m.r. spectrum of **butanone** is shown on the axes below. (i) State which part of the butanone molecule is responsible for peak **A** at δ = 2.1. | Explain your reasoning. | |-------------------------| | | | | | | | | [2] (ii) Explain why peak **B** is split into a quadruplet. |
 |
 | |------|------| | | | | | | [1] (iii) Predict the remainder of the n.m.r. spectrum of butanone by sketching it on the axes above. | (iv) | Write the relative peak area above each of the peaks on the completed spectrum | |------|--| | | of butanone. | [1] [Total 6 marks] In this question, one mark is available for the quality of use and organisation of 3. scientific terms. The structural formulae of three isomers of C₃H₉NO are shown below. Describe the similarities and differences you would expect to see when comparing infra-red spectrum of each isomer | • | mass spectrum of each isomer. | |---|-------------------------------| [5] Quality of Written Communication [1] [Total 6 marks] | An e | ester D with the formula, CH ₃ CH ₂ COOCH ₂ CH(CH ₃) ₂ , is used in rum flavouring. | | |------|--|-----| | (a) | Draw a displayed formula of ester D . | [2] | | | | | | (b) | Outline how you could obtain a sample of ester D , starting with a named carboxylic acid and a named alcohol. | | | | Include any essential reaction conditions and write an equation for the reaction. You do not need to include any details of the separation or purification of the ester. | [0] | | | | [6] | | | | | | | | | | | | | 4. | | ester D has a molecular mass of 130. | | |---------------|--|---------------| | | Explain how you would obtain the molecular mass of D from the spectrum. | Π | Γotal 10 ma | | scier
Desc | is question, one mark is available for the quality of the use and organisation on
tific terms. Cribe and explain the different ways that a high resolution n.m.r. spectrum car
mation about a molecule. | • | | | | | | | | | | | | ·
· | | | | ·
· | | | | · . | | | | | | | | · · · · · | | | | · · · · · | | | | · · · · · · · | | | | | | | | | **6.** Compound **A** is used to add the flavour of mushrooms to foods. compound A | (a) | (i) | Apart from the benzene ring, name the two functional groups in | |-----|-----|--| | | | compound A. | (ii) Draw the skeletal formula of compound A. [1] [1] | (b) | Compound B is a stereoisomer of compound A . | | |-----|---|-----| | | Explain what is meant by the term $\it stereoisomerism$. Use compounds $\bf A$ and $\bf B$ to illustrate your answer. | | | | | | | | | | | | | [2] | | | | [۷] | | (c) | If the food is cooked for a long time, naturally occurring acids catalyse the hydrolysis of compound A . | | | | Draw structures to show the two organic compounds formed by the acid hydrolysis of compound A . | [2] | | | | | | (d) | The hydrolysis of compound A can be monitored by sampling the mixture at regular intervals, separating the components, and recording their infra-red spectra. | | | | (i) State two absorptions that would be expected in the infra-red spectrum of compound A , and identify the parts of the molecule responsible for each. | | | | | | | | | | | | | [2] | | | | | (ii) Suggest a wavenumber range within the spectrum that could be used to clearly distinguish compound **A** from the products formed by the hydrolysis reaction. Explain your answer. [2] [Total 12 marks] **7.** Thua nao is a traditional sauce made in Northern Thailand by fermenting cooked soybeans. Its unique flavour is due to a range of volatile compounds formed during the fermentation. One of these volatile compounds is 3-hydroxybutanone. 3-hydroxybutanone (a) State the meaning of the term *volatile*. [1] | (b) | Several hydroxyketones with similar boiling points can be separated from the fermentation mixture. | | | | | |-----|--|-----------------|--|--|--| | | Describe a method, which does not involve spectroscopy, that could be us distinguish 3-hydroxybutanone from the other hydroxyketones. | ed to | [4] | | | | | | | [Total 5 marks] | | | | $Physics and {\it MathsTutor.com}$ **8.** Compound **G** can be extracted from sugar-cane and is commonly used in 'rejuvenating' skin creams because it helps to remove some of the dead cells from the skin surface. The molecular formula of ${\bf G}$ is $C_2O_3H_4$ and the compound contains **two different** functional groups containing oxygen atoms. The infra-red and mass spectra of **G** are shown below. | (a) | Afte | r inspection of the mass spectrum of ${f G}$, an analyst wrote the comment: | | |-----|------|---|-----| | | | molecular ion peak appears to be missing from the spectrum. base peak is due to a fragment ion with m / e = 31. | | | | (i) | Explain what is meant by the following terms. | | | | | molecular ion peak | | | | | base peak | | | | | | [2] | | | (ii) | Suggest why the molecular ion peak is missing from the spectrum. | | | | | | [1] | | (b) | The | structure of compound G is shown below. | | | | | OH O
H—C—C
H OH | | | | you | w how the infra-red and mass spectra confirm this structure. In your answer, should suggest a possible structure for the ion that gives the base peak at e = 31 in the mass spectrum. | [4] (c) The structure of compound **G** is shown below. Sketch the 1 H n.m.r. spectrum of compound **G** and label the relative peak areas. Label any peaks that would be lost from the spectrum on shaking with D₂O. [4] [Total 11 marks] - **9.** Lactic acid produces an n.m.r. spectrum in D_2O with peaks at chemical shift values of 1.4 ppm and 4.3 ppm. - (i) On the axes below, sketch the high resolution n.m.r. spectrum of lactic acid in $\mathsf{D}_2\mathsf{O}$. Show any splitting patterns and state the relative areas of the two peaks. [4] (ii) How many peaks would you expect if the n.m.r. spectrum of lactic acid was run in an inert solvent rather than in D_2O ? Explain your answer. [2] [Total 6 marks] **10.** Forest fires release a large number of organic compounds into the atmosphere. These include alcohols and carboxylic acids. An environmental chemist is trying to identify one of these compounds in a sample of air. The unknown compound ${\bf X}$ is thought to be a carboxylic acid with empirical formula $C_2H_3O_2$. (a) Mass spectrometry is used to help deduce the molecular formula of compound X. | (i) | Describe how the mass spectrum of compound ${\bf X}$ is used to determine its relative molecular mass. | | | | | | | | | |------|---|-----|--|--|--|--|--|--|--| [2] | (ii) | The relative molecular mass of compound X is shown to be 118. | | | | | | | | | | | Explain how this relative molecular mass and the empirical formula are used to deduce that the molecular formula of compound \mathbf{X} is C_4H_6O4 . | | | | | | | | | (b) The two dicarboxylic acids with molecular formula C₄H₆O₄ are shown below. Show any working. N.m.r. spectroscopy is used to deduce which of these is the unknown compound. The environmental chemist obtains an n.m.r. spectrum of compound \boldsymbol{X} and then adds some D_2O and obtains a second n.m.r. spectrum. | Wha | ıt diffe | renc | e wo | ould y | ou exp | oect b | etwee | n the | se tw | o r | ı.m.r | . spe | ectra | ? | |--------------|----------|-------------|--------------|------------------|--------------------|-----------------------------|-------------------|---------------|------------------|-------------|---------------|--------------|---------------|----------------------------| Prec
n.m. | lict the | enur | nber
n of | r of pe
a sol | eaks a
ution ir | nd an
n D ₂ O | y spin-
of the | -spin
othe | splitt
er aci | ting
d w | exp
ith fo | ecte
ormu | d on
ıla C | the
₄H ₆ O₄. | | Expl | ain yo | ur re | aso | ning. | | | | | | | | | | | | (The | two p | ossi | ible s | struct | ures o | f com | pound | X ar | e sho | own | aga | in b | elow | .) | | | НО | ,
,
, | H
-C
H | H
-C-
H | -с
Он | | Q
Но́ | H— | -C
-C
H | -H
-C | ,
Эн | [Total: 8 marks] **11.** This question is about the use of spectrometry in helping to gain information about the structure of organic molecules. The major peaks in the mass spectra of two hydrocarbons $\bf A$ and $\bf B$ are shown below. Compounds $\bf A$ and $\bf B$ have the same empirical formula. (i) Deduce the molecular formula of each compound. Compound A Compound **B** | (ii) | Draw the structural formula of compound A . | | |-------|---|-----------------| [1] | | | | | | | | | | (iii) | Suggest the species responsible for the peak at m/e 41 in the spectrum of | | | | compound B . | | | | | | | | | | | | | [2] | | | | [Total 5 marks] | | | | | | | | |