- A student is asked to calculate ΔG at 25 °C for the combustion of butan-1-ol. The teacher provides two
 pieces of information.
 - The equation for the combustion of butan-1-ol.

$$CH_3(CH_2)_3OH(1) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(1)$$
 Equation 2

Standard entropies of butan-1-ol oxygen, carbon dioxide and water.

CH ₃ (CH ₂) ₃ OH(l)		$O_2(g)$	$CO_2(g)$	H ₂ O(l)
S ⁰ / J K ⁻¹ mol ⁻¹	228	205	214	70

The student carries out an experiment using the apparatus below and obtains the following results. The specific heat capacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.

Mass of burner and butan-1-ol before burning / g	98.997
Mass of burner and butan-1-ol after burning / g	98.738
Initial temperature / °C	18.5
Maximum temperature reached / °C	39.0

Use the information on the previous page to calculate ΔG , in kJ mol⁻¹, for the combustion of butan-1-ol according to **Equation 2** at 25 °C.

Show all your working.

98.99798.738

90.259

94.004

100x 4.18x (39-18.5) = 8569 $_{T}$ $_$

 $\Delta G = ... 2.3.7.3...$ kJ mol⁻¹ [7]

- 2. This question is about free energy changes, ΔG , enthalpy changes, ΔH , and temperature, T.
 - (a) The Gibbs' equation is shown below.

$$\Delta G = \Delta H - T \Delta S$$

A chemist investigates a reaction to determine how ΔG varies with T. The results are shown in **Fig. 18.1**.

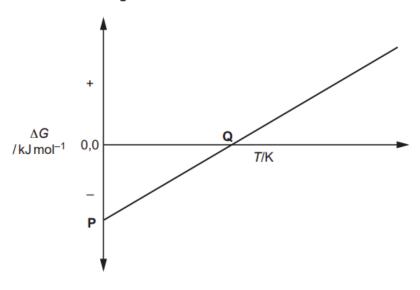


Fig. 18.1

What is significant about the gradient of the line and the values $\bf P$ and $\bf Q$ shown in $\bf Fig.~18.1$? Explain your reasoning.

$\Delta G = \Delta H - T \Delta S$
y = C + moc
gradient = - DS
J. Company
$P(y intercept) = \Delta H$
Q = Temperadure where feasibility
changes
[4]

(b)	Iron can be extracted from its ore Fe ₃ O ₄ using carbon.
	Several equilibria are involved including equilibrium 18.1, shown below

 $\Delta H = +676.4 \text{ kJ mol}^{-1}$ $\Delta S = +703.1 \frac{\text{J} \text{K}^{-1} \text{ mol}^{-1}}{\text{J} \text{K}^{-1} \text{ mol}^{-1}}$ (i) Why is equilibrium 18.1 a heterogeneous equilibrium?

species in different states/passos

(ii) Write the expression for K_0 for equilibrium 18.1.

[1]

- (iii) The forward reaction in equilibrium 18.1 is only feasible at high temperatures.
 - Show that the forward reaction is **not** feasible at 25°C. ← +27 3 = 298 kc
 - Calculate the minimum temperature, in K, for the forward reaction to be feasible.

 $\Delta G = \Delta H - \tau \Delta S$ $\Delta G = 676.4 - 298 \times 0.7031 = 467 \text{ kyrman}^{-1}$ DG>0 so not reasible min. temp = $\frac{676.4}{0.7031} = 962 \text{ K}$

(iv) Another equilibrium involved in the extraction of iron from Fe₃O₄ is shown below.

$$Fe_3O_4(s) + 4CO(g) \implies 3Fe(s) + 4CO_2(g)$$
 $\Delta H = -13.5 \text{ kJ mol}^{-1}$

Enthalpy changes of formation, $\Delta_f H$, for Fe₃O₄(s) and CO₂(g) are shown in the table.

Compound	Δ _f H/kJ mol ^{−1}
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_f H$, for CO(g).

Fe₃O_{4(s)} + 4CO_(g)
$$\xrightarrow{-13.5}$$
 3Fe_(s) + 4CO_{2(g)}
A-1118.5 \downarrow 4x \uparrow 0 \uparrow 4x-393.5

$$(1118.5 - 4x) + (0 + (4x-393.5)) = -13.5$$

$$(118.5 - 4x) = 1560.5$$

$$-4x = 442$$

$$x = -10.5 \text{ ksmol}^{-1}$$

$$\Delta_{H, \text{ for } CO(g)} = -110.5 \text{ ksmol}^{-1}[3]$$

3. The table below shows standard entropies, Se.

Substance	CO(g)	H ₂ (g)	CH ₃ OH(I)
S ^e /Jmol ⁻¹ K ⁻¹	197.6	130.6	239.7

What is the entropy change, ΔS^{e} , in J mol⁻¹ K⁻¹, for the following reaction?

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(I)$$

A -219.1
$$239.7 - (197.6 + (2x130.6))$$
B -88.5

+219.1

Your answer [1]

- 4. A student carries out two experiments in the laboratory based on succinic acid (butanedioic acid), (CH₂COOH)₂.
 - (a) Aqueous succinic acid can be neutralised by aqueous sodium hydroxide, NaOH(aq):

$$(CH_2COOH)_2(aq) + 2NaOH(aq) \rightarrow (CH_2COONa)_2(aq) + 2H_2O(I)$$

This reaction can be used to determine a value for the enthalpy change of neutralisation, where one (S) 20 : Ph S broamce I may of maren $\Delta_{\text{neut}}H$.

The student follows this method:

- Add 50.0 cm³ of 0.400 mol dm⁻³ succinic acid to a polystyrene cup.
- Measure out 50.0 cm³ of 1.00 mol dm⁻³ NaOH(aq), which is in excess. calculation
- Measure the temperature of both solutions.
- Add the NaOH(aq) to the aqueous succinic acid in the polystyrene cup, stir the mixture, and record the maximum temperature.

Temperature readings

Maximum temperature of mixture/°C	26.5
Initial temperature of both solutions/°C	21.5

Calculate a value for the enthalpy change of neutralisation, $\Delta_{neut}H$, in kJ mol⁻¹.

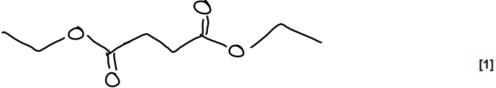
Assume that the density of all solutions and the specific heat capacity, c, of the reaction mixture are the same as for water.

$$50 \times 10^{-3} \times 0.4 = 0.02 \text{ mod}$$

$$\frac{104.5}{2} = \pm 52.3 \text{ Kyrod}$$
entrolly charge of remains with 15 -ve
$$\Delta_{\text{neut}H} = -52.3 \text{ kyrol}^{-1} [4]$$

(b) Succinic acid is esterified by ethanol, C₂H₅OH, in the presence of an acid catalyst to form an equilibrium mixture.

The equilibrium constant, $K_{\rm c}$, for this equilibrium can be calculated using the amounts, in moles, of the components in the equilibrium mixture, using **expression 5.1**.


$$K_{c} = \frac{\text{Products}}{\text{rescients}} K_{c} = \frac{\text{Estex}}{n((\text{CH}_{2}\text{COOC}_{2}\text{H}_{5})_{2}}) \times n(\text{H}_{2}\text{O})} \text{ and } \text{the stoich ionselve}}{n((\text{CH}_{2}\text{COOH})_{2}) \times n(\text{C}_{2}\text{H}_{5}\text{OH})} \text{ of the equilibrium}}$$

A student carries out an experiment to determine the value of K_c for this equilibrium.

- The student mixes together 0.0500 mol of succinic acid and 0.150 mol of ethanol, with a small amount of an acid catalyst.
- The mixture is allowed to reach equilibrium.
- The student determines that 0.0200 mol of succinic acid are present in the equilibrium mixture.
- (i) Which technique could be used to determine the equilibrium amount of succinic acid?

(ii) Write the equation for the equilibrium reaction that takes place.

(iii) Draw the skeletal formula of the ester present in the equilibrium mixture.

(iv) K_c is the equilibrium constant in terms of equilibrium concentrations.

Why can expression 5.1 be used to calculate K_c for this equilibrium?

(v) Calculate the value of
$$K_c$$
 for this reaction. One of the products show your working.

(CH₂COOH)₂ C₂H₅CH (CH₂COOC₂H₅)₂ H₂O while the products of the p

[1]

- Sir Humphry Davy discovered several elements including sodium, potassium, magnesium, calcium 5. and strontium.
 - (a) Explain which block in the Periodic Table sodium and magnesium belong to.

(b) A sample of magnesium, $A_r = 24.305$, is found to consist of three isotopes. The accurate relative isotopic masses and % abundances of two of the isotopes are shown in the table.

Isotope	Relative isotopic mass	% abundance
²⁴ Mg	23.985	78.99%
²⁵ Mg	24.986	10.00%

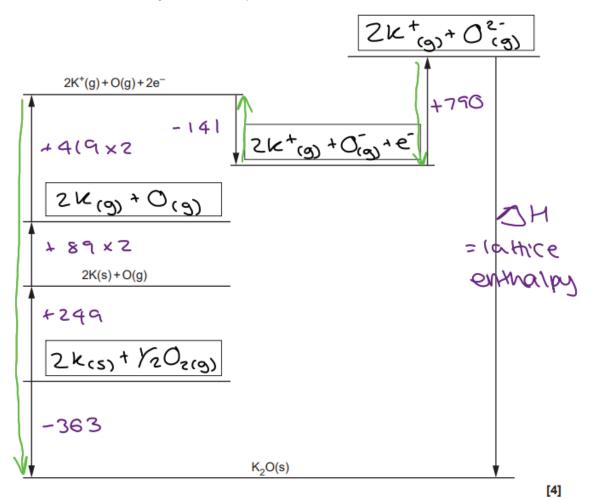
Determine the relative isotopic mass of the third isotope of magnesium in the sample.

Give your answer to 5 significant figures.

- (c) A student adds an excess of calcium oxide to water in a test tube. In a separate test tube, the student adds an excess of strontium oxide to water.
 - (i) Write the equation for the reaction of calcium oxide with water.

State symbols are not required.

(ii) Suggest the approximate pH of the two solutions formed in the test tubes.


__

(d) The table below shows enthalpy changes involving potassium, oxygen and potassium oxide, $\rm K_2O$.

	Enthalpy change /kJ mol ⁻¹
formation of potassium oxide	-363
1st electron affinity of oxygen	-141
2nd electron affinity of oxygen	+790
1st ionisation energy of potassium	+419
atomisation of oxygen	+249
atomisation of potassium	+89

(i) The incomplete Born–Haber cycle below can be used to determine the lattice enthalpy of potassium oxide.

In the boxes, complete the species present in the cycle. Include state symbols for the species.

(ii) Calculate the lattice enthalpy of potassium oxide.

	271	77		
lattice enthalpy =	- 22	(kJ mol ⁻¹	[21

- (e) A similar Born-Haber cycle to potassium oxide in (d) can be constructed for sodium oxide.
 - (i) The first ionisation energy of sodium is more endothermic than that of potassium.
 Explain why.

Sood	uum has	a Smaller	cortowic	radius
o	Sodium,	nuolean	a throughon	
S W O	neoses			
•••••				
				[2]

(ii) The lattice enthalpy of sodium oxide is more exothermic than that of potassium oxide.
Explain why.

For	So	diam) ians	: Are	<u>i</u>	<i>∖</i> .⊂	100/1	Z'r Z.	
Smal	la	So.	Nat	has	a	Zyr.	nger	athad	on
							_		
									[2]

- 6. Sulfuric acid is an important chemical used to make detergents, fertilisers and dyes. It is manufactured in a multi-step process.
 - (a) In the first step of the manufacture of sulfuric acid, sulfur dioxide, SO₂, can be made from the combustion of hydrogen sulfide, H₂S, shown in **Reaction 1**.

 $2H_2S(g) + 3O_2(g) \rightarrow 2SO_2(g) + 2H_2O(l)$ $\Delta_r H = -1125 \text{ kJ mol}^{-1}$ Reaction 1

(i) Explain why the enthalpy change for **Reaction 1** has a negative value.

Use ideas about enthalpy changes associated with bond breaking and bond making.

More energy released by parming bodds than required when breaking bonds

(ii) Some standard entropy values are given below.

Substance	H ₂ S(g)	O ₂ (g)	SO ₂ (g)	H ₂ O(I)
S ^e /JK ⁻¹ mol ⁻¹	206	205	248	70

Using calculations, explain whether Reaction 1 is feasible at 20°C.

Calculations

$$\Delta S = ((2 \times 248) + (2 \times 70)) - ((2 \times 206) + (3 \times 205))$$

$$\Delta S = -391 \text{ Tk}^{-1} \text{ mod}^{-1}$$

$$= -0.391 \text{ kJk}^{-1} \text{ mod}^{-1}$$

$$\Delta G = -1125 - ((273 + 20) \times -0.391)$$

$$\Delta G = -1010 \text{ kJmd}^{-1}$$

Explanation for feasible or non feasible	Leasible	pecanse
NGCO		

(iii) Calculate the standard enthalpy change of formation, $\Delta_{\rm f}H^{\rm e}$, of hydrogen sulfide using the enthalpy change for **Reaction 1**, and the standard enthalpy changes of combustion below.

Substance	∆ _c H ^e /kJ mol ^{−1}
S(s)	-296.8
H ₂ (g)	-285.8

$$2H_{2}S(g) + 3O_{2}(g) \rightarrow 2SO_{2}(g) + 2H_{2}O(l)$$
 $\Delta_{l}H = -1125 \text{ kJ mol}^{-1}$ Reaction 1

 $A_{1}X = -296.8$
 $A_{2}X = 285.8$
 $A_{3}X = 285.8$
 $A_{4}X = 24.8$
 $A_{5}X = 285.8$

$$(-296.8 \times 2) + (-285.8 \times 2) + 1128 = -40.2 = 20.1$$

$$\Delta_t H^e$$
 of hydrogen sulfide = $-20 \cdot 1$ kJ mol⁻¹ [3]

(b) The second step in the manufacture of sulfuric acid is the conversion of SO_2 into sulfur trioxide, SO₃, using **Equilibrium 1**.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

$$\Delta H = -197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Equilibrium 1

An industrial chemist carries out some research into Equilibrium 1.

- The chemist fills a $10.2 \,\mathrm{dm}^3$ container with $\mathrm{SO}_2(\mathrm{g})$ at RTP, and then adds $12.0 \,\mathrm{g}$ of $\mathrm{O}_2(\mathrm{g})$.
- The chemist adds the vanadium(V) oxide catalyst, and heats the mixture. The mixture is allowed to reach equilibrium at a pressure of 2.50 atm and a temperature of 1000 K.
- A sample of the equilibrium mixture is analysed, and found to contain 0.350 mol of SO₃.
- Write an expression for K_p for **Equilibrium 1**.

Include the units.

atm2 = 1

$$Kb = \frac{b(20^3)_5 \times b(0^5)}{b(20^3)_5}$$

$$\frac{(0.2)}{24} = 0.425 \, \text{mod}$$
 of 502

$$C = 0.350 - 0.35$$
 $+0.350$ foral model = 0.625

(ii) Determine the value of
$$K_p$$
 for Equilibrium 1 at 1000 K.

Show all your working.

Give your answer to 3 significant figures.

$$\frac{(6.2)}{24} = 0.425 \text{ and of } 502$$

The product of the value of K_p for Equilibrium 1 at 1000 K.

$$\frac{24}{24} = 10.425 \text{ and of } 502$$

The product of the value of K_p for Equilibrium 1 at 1000 K.

$$\frac{24}{24} = 10.425 \text{ and of } 502$$

$$\frac{12}{32} = 0.375 \text{ mod of } O_2$$

$$SO_2 O_2 SO_3$$

$$T 0.425 0.375 O$$
Pountal pressure
fraction × pressure

$$E = 0.075 = 0.200$$

$$P(SO_2) = \frac{0.075}{0.625} \times 2.5 = 0.304m$$

$$P(O_2) = \frac{0.2}{0.625} \times 2.5 = 0.804m$$

$$P(SO_3) = \frac{0.35}{0.625} \times 2.5 = 1.404m$$

$$K_p = \frac{(1.4)^2}{(0.3)^2 \times (0.8)}$$

$$K_p = 27.2 \text{ a} \text{ a} \text{ mol}$$

$$K_{\rm p} = 27 \cdot 2$$
 [5]

(iii) The chemist repeats the experiment in (b) at a different temperature.

The chemist finds that the value of ${\it K}_{\rm p}$ is greater than the answer to (b)(ii).

Explain whether the temperature in the second experiment is higher or lower than 1000 K.

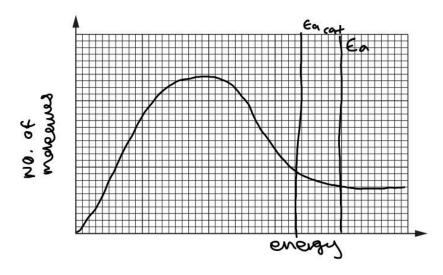
Greater Kp value means equilibrium
position Shifted to the vight so
lower temperature because forward
readen is exduamic [2
Explain the significance of the expression: $K_p \gg 1$.

(iv)

	0		Р			
eg	<i>Sylrpsim</i>	POSINO	m feu	18	the	
	mt		•			
			•••••			[1]

(c) Vanadium(V) oxide, V₂O₅(s), is used as a catalyst in equilibrium 1.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$


$$\Delta H = -197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Equilibrium 1

(i) Explain how the presence of $V_2O_5(s)$ increases the rate of reaction.

Include a labelled sketch of the Boltzmann distribution, on the grid below.

Label the axes.

wore macaues callide with enough above actuator energy (with catalytic).

(ii) Explain whether vanadium(V) oxide is acting as a homogeneous or heterogeneous catalyst.

Melerogenous becomes calelyst is in a different phase / state [1]

- 7. This question is about copper(II) sulfate, CuSO₄, and sodium thiosulfate, Na₂S₂O₃.
 - (a) The enthalpy change of reaction, Δ_rH, for converting anhydrous copper(II) sulfate to hydrated copper(II) sulfate is difficult to measure directly by experiment.

$$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$$

$$\Delta_r H$$

reaction 5.1

The enthalpy changes of solution of anhydrous and hydrated copper(II) sulfate can be measured by experiment. The reactions are shown below.

In the equations, 'ag' represents an excess of water.

$$CuSO_4(s) + aq$$
 $\rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$ $\Delta_{sol}H(CuSO_4(s))$

$$\rightarrow$$
 Cu²⁺(aq) + SO₄²⁻(aq)

$$\Delta_{acl}H(CuSO_{4}(s))$$

reaction 5.2

$$CuSO_4 \cdot 5H_2O(s) + aq \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$$
 $\Delta_{sol}H(CuSO_4 \cdot 5H_2O(s))$

$$\Delta_{sol}H(CuSO_4 \cdot 5H_2O(s))$$

reaction 5.3

Experiment 1

A student carries out an experiment to find $\Delta_{sol}H(CuSO_4(s))$ for reaction 5.2.

Student's method

- Weigh a bottle containing CuSO₄(s) and weigh a polystyrene cup.
- Add about 50 cm³ of water to the polystyrene cup and measure its temperature.
- Add the $CuSO_A(s)$, stir the mixture, and measure the final temperature.
- Weigh the empty bottle and weigh the polystyrene cup with final solution.

Mass readings

Mass of bottle + CuSO ₄ (s)/g	28.04
Mass of empty bottle/g	20.06
Mass of polystyrene cup/g	23.43
Mass of polystyrene cup + final solution/g	74.13

Temperature readings

Initial temperature of water/°C	20.5
Temperature of final solution/°C	34.0

Experiment 2

The student carries out a second experiment with CuSO₄•5H₂O (reaction 5.3). The student uses the same method as in Experiment 1.

The student calculates $\Delta_{sol}H(CuSO_4 \cdot 5H_2O(s))$ as +8.43 kJ mol⁻¹.

(i)*	Calculate $\Delta_{\rm sol}H({\rm CuSO_4(s)})$ for reaction 5.2 and determine the enthalpy change of reaction 5.1 , $\Delta_{\rm r}H$.
	Assume that the specific heat capacity, c , of the solution is the same as for water.
	Show your working, including an energy cycle linking the enthalpy changes. [6]
	E= MCAT
	74.13-23.43 = 50.7 g (mass of solution)
	DT = 34.0-20.5 = 13.5 °C
	E= 50.7 × 4.18 × 13.5 = 28615 = 2.86165
	The second secon
	28-09-20.06 = 7.989 mon x RFM
	7.98 =0.05 mod of Ca304 (63.5+32+ (16x4))
	2.861 = -57.22 rema-1 Dsalt ((uD)4(s))
	0.05
	-57.22- 8.43 = -65.65 kymod-1
	$= \Delta_{\zeta} \mathcal{H}$
	Additional answer space if required

(ii) The thermometer had an uncertainty in each temperature reading of ±0.1°C.

The student calculates a 20% uncertainty in the temperature change in Experiment 2.

Calculate the temperature change in Experiment 2.

(b) The standard enthalpy change of reaction, $\Delta_r H^{\bullet}$, and the standard free energy change, ΔG^{\bullet} , for converting anhydrous sodium thiosulfate to hydrated sodium thiosulfate are shown below.

$$Na_2S_2O_3(s) + 5H_2O(l) \rightarrow Na_2S_2O_3 \cdot 5H_2O(s)$$
 $\Delta_r H^{\oplus} = -55.8 \text{ kJ mol}^{-1}$
 $\Delta_G G^{\oplus} = -16.1 \text{ kJ mol}^{-1}$

Standard entropies are given in the table.

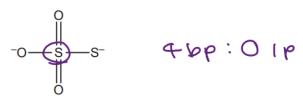
Compound	S ⁺ /JK ⁻¹ mol ⁻¹
Na ₂ S ₂ O ₃ •5H ₂ O(s)	372.4
H ₂ O(I)	69.9

Determine the **standard** entropy, S^{\bullet} , of anhydrous sodium thiosulfate, $Na_2S_2O_3(s)$.

Give your answer to 3 significant figures.

$$\Delta G = \Delta H - T\Delta S$$

$$-16.1 = -55.8 - 298 (\Delta S)$$


$$39.7 = -298 (\Delta S)$$

$$-0.133 = \Delta S = -133 \text{ JK}^{-1} \text{ md}^{-1}$$

$$\text{KJ K}^{-1} \text{ md}^{-1}$$

$$\Delta S = 372.4 - (5x69.9) = 22.9 \text{ J K}^{-1}\text{mol}^{-1}$$

 $\Delta S = 22.9 - (-133) = 156 \text{ J K}^{-1}\text{mol}^{-1}$

(c) Sodium thiosulfate contains the thiosulfate ion, $\rm S_2O_3^{\ 2^-}$. The displayed formula of $\rm S_2O_3^{\ 2^-}$ can be shown as below.

thiosulfate ion

(i) Predict the O-S-S bond angle and name of the shape of the thiosulfate ion.

(ii) In some of its reactions, the thiosulfate ion forms the tetrathionate ion, $S_4O_6^{\ 2-}$.

The $S_4O_6^{2-}$ ion is a 'dimer' of $S_2O_3^{2-}$.

Draw a displayed formula for the $\mathrm{S_4O_6}^{2-}$ ion.

8.

	hanol, CH ₃ OH, can be made indu wn in equilibrium 1 .	strially by the reaction of ca	arbon monoxide with hydrogen, as
CO	$(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	$\Delta H = -91 \mathrm{kJ} \mathrm{mol}^{-1}$	Equilibrium 1
(a)	yield of CH3OH in equilibrium 1 Explain your answer. Right hand Sid So high pressu Forward room temperature	on was ever re e has tener	vermic 20 10m
(b)	A catalyst is used in the production State two ways that the use of comore sustainable and less harms	on of methanol in equilibr iatalysts helps chemical colul to the environment.	ium 1. companies to make their processes

(c) Standard entropy values are given below.

Substance	CO(g)	H ₂ (g)	CH ₃ OH(g)
Se/JK ⁻¹ mol ⁻¹	198	131	238

A chemist proposed producing methanol at 525K using equilibrium 1.

Explain, with a calculation, whether the production of methanol is feasible at 525 K.

$$\Delta S = 238 - (198 * (2 \times 131)) = -222 \text{ y.c.'mol.'}$$

$$= -0.222 \text{ kyke'mol.'}$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = -91 - (525 \times -0.222) = 25.55$$

$$\text{kymol.'}$$

$$\text{not feasible as } \Delta G > 0$$
[5]

(d) At 298K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is $-2.48 \times 10^4 \text{J} \text{mol}^{-1}$.

 ΔG is linked to K_p by the relationship: $\Delta G = -RT \ln K_p$.

$$lnkp = \frac{\Delta G}{-RT}$$

R = gas constant T = temperature in K.

Calculate K_o for **equilibrium 1** at 298 K.

Give your answer to 3 significant figures.

$$lnkp = \frac{-2.48 \times 10^4}{-8.314 \times 298}$$

= 10.01

$$K_p = .2.22 \times 10^4 \text{ units } a + m^{-2}$$
 [3]