- 1 Chemists use three energy terms, enthalpy, entropy and free energy, to help them make predictions about whether reactions may take place.
 - (a) The table below shows five processes. Each process has either an increase in entropy or a decrease in entropy.

For each process, tick (\checkmark) the appropriate box.

process		increase in entropy	decrease in entropy
Α	$C_2H_5OH(I) \rightarrow C_2H_5OH(g)$		
В	$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$		
С	$NH_4Cl(s) + aq \longrightarrow NH_4Cl(aq)$		
D	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$		
E	$2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I)$		

[2]

(b) At 1 atm (101 kPa) pressure, ice melts into water at 0 °C.

Complete the table below using the symbols '+', '–' or '0' to show the sign of ΔH and ΔS for the melting of ice at 0 °C and 1 atm.

For each sign, explain your reasoning.

energy change	sign +, – or 0	reasoning
ΔΗ		
ΔS		

[2]

(c) Much of the hydrogen required by industry is produced by reacting natural gas with steam:

$$CH_4(g) + H_2O(g) \longrightarrow 3H_2(g) + CO(g)$$

Standard entropies are given in the table below.

substance	CH ₄ (g)	H ₂ O(g)	H ₂ (g)	CO(g)
S ^e /J K ⁻¹ mol ⁻¹	186	189	131	198

(i) Calculate the standard entropy change, in $J K^{-1} mol^{-1}$, for this reaction of natural gas with steam.

$$\Delta S^{\Theta} = \dots J K^{-1} mol^{-1}$$
 [2]

(ii) State two large-scale uses for the hydrogen produced.

1.

(d) Ammonium chloride, NH_4Cl , can dissociate to form ammonia, NH_3 , and hydrogen chloride, HCl.

$$\mathsf{NH_4C}\mathit{l}(\mathsf{s}) \longrightarrow \mathsf{NH_3}(\mathsf{g}) + \mathsf{HC}\mathit{l}(\mathsf{g})$$

At 298 K, $\Delta H = +176 \text{ kJ mol}^{-1}$ and $\Delta G = +91.2 \text{ kJ mol}^{-1}$.

- Calculate ΔG for this reaction at 1000 K.
- Hence show whether this reaction takes place spontaneously at 1000 K.

Show all your working.

$\Delta G = \dots$	kJ mol ^{–1} [4	·]
--------------------	--------------------------------	----

[Total: 11]

2	Free energy changes can be used to predict the feasibility
	of processes.

(a)	Write down t	the	equation	that	links	the	free	energy	change	with	the	enthalpy	change	and
	temperature.													

.....[1]

(b) You are provided with equations for five processes.

For each process, predict the sign of ΔS .

process	sign of ∆S
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	
$NaCl(s) + (aq) \rightarrow NaCl(aq)$	
$H_2O(I) \rightarrow H_2O(s)$	
$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$	
$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$	

[2]

(c) Ammonia can be oxidised as shown in the equation below.

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

Standard entropies are given in the table below.

substance	NH ₃ (g)	O ₂ (g)	NO(g)	H ₂ O(g)
S ^e / J K ⁻¹ mol ⁻¹	192	205	211	189

Calculate the standard entropy change, in $J K^{-1} mol^{-1}$, for this oxidation of ammonia.

$$\Delta S^{\bullet} = J K^{-1} mol^{-1}$$
 [2]

(d)	The exothermic reaction below occurs spontaneously at low temperatures but does not occur at very high temperatures.					
	$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$					
	Explain why.					
	[2]					
(e)	An ore of iron contains iron(III) oxide, Fe_2O_3 . Iron is extracted from this ore by heating with carbon. The equation below shows one of the reactions which takes place.					
	$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$					
	$\Delta S = +543 \text{J K}^{-1} \text{mol}^{-1}$ and $\Delta H = +493 \text{kJ} \text{mol}^{-1}$					
	Calculate the minimum temperature at which this reaction becomes feasible.					
	Show all your working.					
	minimum temperature =[3]					
	[Total: 10]					

- (a) You are provided with equations for four processes.
 - $\begin{array}{ll} \textbf{A} & 2\mathrm{SO}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) \, \longrightarrow \, 2\mathrm{SO}_3(\mathrm{g}) \\ \textbf{B} & \mathrm{H}_2\mathrm{O}(\mathrm{I}) \, \longrightarrow \, \mathrm{H}_2\mathrm{O}(\mathrm{g}) \\ \textbf{C} & \mathrm{H}_2(\mathrm{g}) + \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \, \longrightarrow \, \mathrm{H}_2\mathrm{O}(\mathrm{I}) \\ \textbf{D} & 2\mathrm{C}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g}) \, \longrightarrow \, 2\mathrm{CO}(\mathrm{g}) \end{array}$

For each process, explain why AS has the sign shown below.

reason for sign:
D : sign of ΔS : positive
reason for sign:
C: sign of ∆S: negative
reason for sign:
B : sign of ΔS : positive
reason for sign:
A: sign of ΔS: negative

(b) Calcium oxide, CaO, is used to make cement. Calcium oxide is manufactured by the thermal decomposition of calcium carbonate.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 $\Delta H = +178 \text{ kJ mol}^{-1}$

Standard entropies of CaCO₃(s), CaO(s) and CO₂(g) are given in the table below.

substance	CaCO ₃ (s)	CaO(s)	CO ₂ (g)
S/JK ⁻¹ mol ⁻¹	89	40	214

- Using the information in the table, show that the entropy change, ΔS , for the decomposition of calcium carbonate is 0.165 kJ K⁻¹ mol⁻¹.
- Show that calcium carbonate is stable at room temperature (25 °C).
- Calculate the minimum temperature needed to decompose calcium carbonate.

Show all your working.