This	question	looks at two reaction	ns involving s	sulfur compo	ounds.		
(a)	Hydrogen	reacts with carbon	disulfide as	shown belov	N.		
		4H ₂ (g) + C	$S_2(g) \rightarrow CH$	I ₄ (g) + 2H ₂ S	S(g)		
For	this reacti	on, $\Delta H = -234 \text{kJ}\text{mg}$	ol ⁻¹ and $\Delta S =$	= -164JK ⁻¹	mol ^{−1} .		
(i)	(i) Why does the reaction have a negative entropy change?						
							[1]
(ii)	Standard	l entropies are show	n in the table	e below.			
		substance	CS ₂ (g)	CH ₄ (g)	H ₂ S(g)		
		S ^o /JK ⁻¹ mol ⁻¹	238	186	206		
	Calculate	e the standard entrop	by for H ₂ .				
				S ⁰ =		.11	K ⁻¹ mol ⁻¹ [2]
(iii)	Explain.	with a calculation, w	hether this re				· [2]
()	·	ur working.					
	Í	Ū					
(!- A	Franksia i						[3]
(iv)	reaction.	with a calculation, th	e significand	e of temper	atures abov	⁄e 1154°C f	or this
					•••••		[2

1

(b)	A chemist investigated methods to improve the synthesis of sulfur trioxide from sulfur dioxid
	and oxygen.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The chemist:

- mixed together 1.00 mol $\rm SO_2$ and 0.500 mol $\rm O_2$ with a catalyst at room temperature compressed the gas mixture to a volume of 250 cm 3
- allowed the mixture to reach equilibrium at constant temperature and without changing the total gas volume.

At equilibrium, 82.0% of the SO₂ had been converted into SO₃.

(i)	Determine the concentrations of SO ₂ , O ₂ and SO ₃ present at equilibrium and calculate
	$K_{\rm c}$ for this reaction.

K	_	unito	[6]
Λ.	=	uiilo	101

(ii)	Explain what would happen to the pressure as the system was allowed to reach equilibrium.
	[1]
(iii)	The value of $K_{\rm c}$ for this equilibrium decreases with increasing temperature.
	Predict the sign of the enthalpy change for the forward reaction. State the effect on the equilibrium yield of ${\rm SO}_3$ of increasing the temperature at constant pressure.
	Δ <i>H</i> :
	Effect on SO ₃ yield:[1]
(iv)	The chemist repeated the experiment at the same temperature with 1.00 mol SO_2 and an excess of O_2 . The gas mixture was still compressed to a volume of $250\mathrm{cm}^3$.
	State and explain, in terms of K_c , how the equilibrium yield of SO_3 would be different from the yield in the first experiment.
	[3]
	[Total: 19]

(a)	Thre	ee processes are given below.		
		each process, state and explain whether the change would be accompanied be ease or decrease in entropy.	оу а	an
	(i)	The freezing of water.		
		increase or decrease		
		explanation		
			L	[1]
	(ii)	The reaction of calcium carbonate with hydrochloric acid.		
		increase or decrease		•••
		explanation		
				 [1]
	(iii)	The formation of $O_3(g)$ from $O_2(g)$.	·	.',
		increase or decrease		
		explanation		
			[1]
(b)	The	enthalpy and entropy changes of a reaction both have a negative sign.		
	Disc	cuss how the feasibility of this reaction will change as the temperature increases.		
			[2]

2

This question looks at different aspects of entropy.

(c)	The metal tungsten is obtained on a large scale from its main ore, wolframite.
	Wolframite contains tungsten(VI) oxide, WO ₃ .

Tungsten is extracted from wolframite by reduction with hydrogen:

$$WO_3(s) + 3H_2(g) \rightarrow W(s) + 3H_2O(g)$$
 $\Delta H = +115 \text{ kJ mol}^{-1}$

$$\Delta H = +115 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Standard entropies are given in the table below.

Substance	WO ₃ (s)	H ₂ (g)	W(s)	H ₂ O(g)
S [⊕] /JK ⁻¹ mol ⁻¹	76	131	33	189

(i)	Calculate the free energy change, ΔG , in kJ mol ⁻¹ , for this reaction at 25 °C
	Show your working.

$$\Delta G$$
 at 25 °C =kJmol⁻¹ [2]

(ii) Calculate the minimum temperature, in K, at which this reaction becomes feasible. Show your working.

minimum temperature = K [2]

[Total: 9]

3	The equ	uation for th	ne reaction of CO ₂ an	d H ₂ O to p	roduce glu	ıcose, C ₆ F	$H_{12}O_6$, and O_2 is shown
	6CO ₂ (g	g) + 6H ₂ O($I) \rightarrow C_6 H_{12} O_6(s) + 6$	δO ₂ (g) Δ <i>H</i> =	= +2879 kJ	mol ⁻¹ ; ΔS	$C = -256 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
	Standar	d entropies	are given in the table	below.			
			Substance	CO ₂ (g)	H ₂ O(I)	O ₂ (g)]
			S [⊕] / J K ⁻¹ mol ⁻¹	214	70	205	
	(a) (i)	Calculate	the standard entropy of	of glucose.			
	(ii)		Δ <i>G</i> , in kJ mol ^{–1} , at 25 ° /our working.		S [⊕] =		J K ^{–1} mol ^{–1} [2]
				Δ	.G =		kJ mol ⁻¹ [2]
	(iii)	Explain w	hy this reaction is not t	feasible at a	any tempe	rature.	

(b)	Although the reaction between CO_2 and $\mathrm{H}_2\mathrm{O}$ to form $\mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6$ and O_2 appears not to be feasible, plants are able to make the reaction take place spontaneously by photosynthesis.
	Each year, $3.4 \times 10^{18} \text{kJ}$ of solar energy is taken in by all the plants on the Earth to make photosynthesis take place.
	Calculate the mass of carbon dioxide that is removed each year from the atmosphere by photosynthesis on Earth.

mass of CO_2 = [2]

[Total: 7]

4 Nitrogen dioxide reacts with ozone as shown below.

$$2\mathsf{NO}_2(\mathsf{g}) \; + \; \mathsf{O}_3(\mathsf{g}) \; \longrightarrow \; \mathsf{N}_2\mathsf{O}_5(\mathsf{g}) \; + \; \mathsf{O}_2(\mathsf{g})$$

(a) The kinetics of the reaction between ${\rm NO}_2$ and ${\rm O}_3$ was investigated and the following experimental results were obtained.

experiment	[NO ₂ (g)] /moldm ⁻³	[O ₃ (g)] /mol dm ⁻³	initial rate /moldm ⁻³ s ⁻¹
1	0.00150	0.00250	4.80 × 10 ⁻⁸
2	0.00225	0.00250	7.20 × 10 ⁻⁸
3	0.00225	0.00500	1.44 × 10 ⁻⁷

(i) Determine the rate equation and rate constant for the reaction of $NO_2(g)$ and $O_3(g)$.

r	n your answer you should make clear how your conclusions fit with the experiment results.

	(ii)	Suggest a possible two-step mechanism for this reaction.
		[2]
(b)		feasibility of the reaction between ${ m NO_2}$ and ${ m O_3}$ is influenced by the enthalpy change and copy change of the reaction and the temperature.
		$2{\rm NO_2(g)} \ + \ {\rm O_3(g)} \ \longrightarrow \ {\rm N_2O_5(g)} \ + \ {\rm O_2(g)} \\ \Delta H = -198{\rm kJmol^{-1}} \\ \Delta S = -168{\rm JK^{-1}mol^{-1}}$
	(i)	Explain why this reaction has a negative entropy change.
		[2]
	(ii)	Calculate the value of ΔG , in kJ mol ⁻¹ , at 25 °C for the reaction of NO ₂ with O ₃ .
		$\Delta G = \dots kJ \text{mol}^{-1} [3]$
	(iii)	State and explain how the feasibility of this reaction will change with increasing temperature.
		[2]

[Total: 17]