1 This question is about different alkanes present in crude oil.(a) Compound A, shown below, is one of the structural isomers of C₇H₁₆.

[1]

(d)	Alka	anes are used as fuels.	
	(i)	Construct an equation for the complete combustion of octane $\mathrm{C_8H_{18}}$.	
			[1]
	(ii)	Combustion of 36.48 g of octane produced 2.50 mol of carbon dioxide.	
		Show that this combustion was incomplete.	
			[2]
(e)	Alka	anes in crude oil can be used to manufacture ethene. Two stages are required.	
	(i)	Name the two stages.	
			[1]
	(ii)	Write an equation for the preparation of ethene from an alkane.	
			[1]
			[Total: 9]

2 This question is about cyclic organic compounds.

The table shows some information about cycloalkanes.

Cycloalkane	Skeletal formula	Boiling point/°C
Cyclopropane		-33
Cyclopentane		49
Cyclohexane		81

(a)	These cycloalkanes are members of the same homologous series and have the same general
	formula.

(i)	What is meant by the term <i>homologous series</i> ?	
		[2]
(ii)	State the general formula for these cycloalkanes.	
		[1]
(iii)	Explain the increase in boiling points of the cycloalkanes shown in the table.	
		[2]

(b)	The	CCCC bond angles in cyclohexane are 109.5°.	
	Stat	te and explain the shape around each carbon atom in cyclohexane.	
	sha	pe	
	ехр	lanation	
			[2]
(c)		he absence of ultraviolet radiation, cyclopropane undergoes an addition reaction wine.	vith
	Sug	gest the structure of the organic product formed in this reaction.	
			[1]
(d)	Petr	rol contains both cyclohexane , C ₆ H ₁₂ , and hexane.	
	Сус	lohexane can be prepared from hexane.	
	(i)	Construct the equation for this reaction.	
			[1]
	(ii)	Suggest one advantage of adding cyclohexane to hexane in petrol.	
			[1]
(e)	Сус	clobutane is another cycloalkane.	
	The	re are several unsaturated isomers of cyclobutane that are alkenes.	
	Two	of these isomers are stereoisomers.	
	(i)	Explain what is meant by the term stereoisomers.	
			 [1]
	(ii)	Draw these two stereoisomers	• •

	Include a	Il possible termination steps in your answer.	
S	tep	Equation	
Initiati	on		
Propa	gation		
Termiı	nation		
		tion step involves homolytic fission. Thy the initiation step is an example of homolytic fission.	[5]
			[1]
(g) The	reaction b	between cyclohexane and bromine in (f) also forms C ₆ H ₁₀ Br ₂ .	
		equation, using molecular formulae, for the reaction of cyclohexane and brosence of ultraviolet radiation to form ${\rm C_6H_{10}Br_2}$.	omine
			[1]
(ii)	Name or cyclohexa	ne of the structural isomers of $C_6H_{10}Br_2$ formed in the reaction be ane and bromine.	tween

de oil	is processed by the petroleum industry to make fuels and petrochemicals.
	e straight-chain alkane, A , is present in crude oil. as molecules with ten carbon atoms.
(i)	What is the molecular formula of A ?
(ii)	B is a branched-chain isomer of A.
	Draw the skeletal formula of a possible structure for B .
	Name your structure.
	name[2
(iii)	The branched-chain isomer B has a lower boiling point than the straight chain alkane A
	Explain why.
	[2
A c	hemist heats a pure sample of $C_{15}H_{32}$ in the presence of a catalyst.
A re	eaction called cracking happens.
(i)	Construct an equation to show the cracking of $C_{15}H_{32}$.
	[1
(ii)	When cracking takes place, a large number of products are formed.
	Suggest why a large number of products are formed.
	r4
	The A h (i) (iii) A cl A re (i)

(c)	The	petroleum industry processes straight-chain alkanes into cyclic hydrocarbons.
	For	example, octane can be processed into a cyclic hydrocarbon and hydrogen.
	(i)	Suggest the structure of this cyclic hydrocarbon.
		T41
	/ii\	[1]
	(ii)	Why does the petroleum industry process straight-chain alkanes into cyclic hydrocarbons?
		[1]
		[Total: 9]
		[Total. 9]

4 Compound I is found in biodiesel. It has the skeletal formula shown below.

(2)	Name the	two	functional	aroune	that are	nresent i	n a m	مامدينام	of T
(a)	maine ine	LWU	iuncuonai	uroups	liial ale	DIESEIR II	n a m	Diecule	OI I.

•••		 		• • • • • • • • • • • • • • • • • • • •			 						
													[O]
		 					 	 	 	 	 	 	 [4]
١.	n!.	 	l T		_ 4	4 - 10							

(b) Why is compound I unsaturated?

	F41
	[1]

(c) A sample of compound I is shaken with aqueous bromine.

What colour change would you see?

from to

- (d) Compound J is a stereoisomer of compound I.
 - (i) What is meant by the term stereoisomers?

[41	

(ii) Draw or describe how the structure of J differs from that of I.

(e)	A s	student determined the enthalpy change of combustion for compound ${f I}.$	
	In h	her experiment, 1.34 g of compound I was used to heat 50.0 g of water.	
	The	ne temperature of the water changed from 20.2°C to 54.0°C.	
	(i)	What is meant by the term enthalpy change of combustion, $\Delta H_{\rm c}$?	
			[2]
	(ii)	Calculate the energy released, in kJ, in the student's experiment.	
		The specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹ .	
		energy =	kJ [2]
	(iii)	The molecular formula of compound ${\bf I}$ is ${\bf C_{17}H_{32}O_2}$.	
		Calculate the amount, in moles, of compound I used by the student.	
		amount =	mol [2]
((iv)	Calculate the enthalpy change of combustion of compound I .	
		$\Delta H_{\rm c} = \dots k$	l mol ^{–1} [3]

	(v)	The student noticed that compound I burnt with a yellow flame and produced black smoke.
		Suggest an explanation for these observations.
		[1]
(f)	Son	ne scientists believe that we should use more biofuels such as biodiesel and bioethanol.
	Bio	ethanol is made by the fermentation of plant sugars such as glucose.
		te the equation for the fermentation of glucose to make ethanol and state two essential ditions for this fermentation.
	equ	ation
	ess	ential conditions
		[3]
		[Total: 19]