L, M, N and P are straight-chain organic compounds containing C, H and O only. 1

The flowchart shows reactions involving these compounds.

Analysis of compound L shows the following.

- Percentage composition by mass: C, 40.00%; H, 6.67%; O, 53.33%.
- Relative molecular mass of 90.0.
- The infrared spectrum below.

Show your working.	

(a) Calculate the empirical and molecular formulae of compound L.

(D)	Analyse the information and spectrum to determine the structures of L and W .
	Include an equation for the reaction of L to form M .
(c)	Determine the structures of compounds N and P .
(<i>v)</i>	Estimate the number of repeat units in polymer P and write the equation for the formation of P from N .
	[4]

2	(a) Com	spound B , C_xH_yO , can be oxidised to form a ketone
	0.035 n	nol of B has a mass of 2.59 g.
	Compo two cor	bund B reacts with compound D , $C_3H_6O_2$, in the presence of an acid catalyst to form mpounds E and F .
	•	Calculate the molar mass of compound B .
	•	Give the structures of compounds B, C, D, E and F.
	•••••	

(b) Compound **G** is a branched-chain organic compound that does **not** have *E* and *Z* isomers.

Elemental analysis of compound **G** gave the following percentage composition by mass: C, 55.8%; H, 7.0%; O, 37.2%.

The mass spectrum and infrared spectrum of compound **G** are shown below.

Mass spectrum

Infrared spectrum

- Calculate the empirical and molecular formulae for compound G.
- Write the formulae for the particles responsible for peak X and peak Y in the mass spectrum.
- Draw the structure of compound **G**.

L	Explain fully how you arrive at a structure for compound $oldsymbol{G}$ using all the evidence provided.
	[Total:

- 3 Mass spectrometry and infrared spectroscopy are used in analysis.
 - (a) The element sulfur exists as molecules, S_n .

The mass spectrum that would be given by a sample of sulfur is shown below. All the sulfur atoms are the same isotope.

(i) State the m/z value of the molecular ion.

.....[1]

(ii) Suggest the formula for a molecule of sulfur.

.....[1]

(iii) What is the formula for the fragment ion with m/z = 128?

.....[1]

(b) A sample of an element, **L** is analysed using mass spectrometry. The mass spectrum is shown below.

Calculate the relative atomic mass of **L**. Give your answer to **one** decimal place.

(d) The solvent, M, is an organic compound used in paints. The solvent M was analysed.

M has a relative molecular mass of 72.0.

The percentage composition by mass of **M** is C, 66.7%; H, 11.1%; O, 22.2%.

The infrared spectrum of ${\bf M}$ is shown below.

The analysis produces several possible organic structures.

Suggest, with reasons, two possible structures for M.

[Total: 11]

4 Compound **X** and compound **Y** react together to make an ester **Z**. Samples of **X** and **Y** were analysed by a research chemist. A summary of the chemist's results are shown below.

Analysis of compound X

type of analysis	evidence
infrared spectroscopy	absorption at 1720 cm ⁻¹ and a very broad absorption between 2500 and 3300 cm ⁻¹
percentage composition by mass	C, 48.65%; H, 8.11%; O, 43.24%
mass spectrometry	molecular ion peak at $m/z = 74.0$

Analysis of compound Y

infrared spectrum of Y

mass spectrum of ${\bf Y}$

Use this information to suggest the identity of compound X, compound Y and ester Z. In your answer you should make clear how your explanation is linked to the evidence.

[Total:10]

Infrared spectroscopy and mass spectrometry are used to identify substances.				
(a)	Police use breathalysers to detect ethanol in the breath of drivers.			
	(i) Some modern breathalysers use infrared spectroscopy.			
		Suggest two characteristic infrared absorptions that could be used to identify the presence of ethanol vapour.		
		1 cm ⁻¹		
		2cm ⁻¹ [2]		
	(ii) Some older breathalysers used the redox reaction between acidified dichromate(VI) is and ethanol. A colour change was seen which indicated the presence of ethanol in breath.			
		What is the colour change that would be seen in this breathalyser if ethanol was present in the breath?		
		to		
	(iii) Give an equation to show the reaction between acidified dichromate(VI) ions ethanol.			
	Use [O] to represent the acidified dichromate(VI) ions, the oxidising agent.			
		[2]		

5

(b) Infrared spectroscopy and mass spectrometry are used in the search for organic molecules in outer space.

Compound A has been analysed by infrared spectroscopy.

The mass spectrum of compound **A** is shown below.

A research chemist concludes that compound A is a hydrocarbon.				
What evidence is there to support this conclusion?				
[2]				
How does the mass spectrum confirm that compound ${\bf A}$ has a molecular formula of ${\rm C_4H_{10}?}$				
[1]				
Draw the structural isomers of C ₄ H ₁₀ .				
[1]				
Identify the fragment ions that give rise to the following peaks in the mass spectrum.				
<i>m/z</i> 15 is				
<i>m</i> /z 29 is				
<i>m</i> /z 43 is				
Use your answer to part (iv) to identify which of the isomers in part (iii) is compound A. Explain your reasoning.				

[Total: 13]

[1]