
- **1** The flowchart shows how 2-methylbut-2-ene can be converted into a number of organic products.
 - (a) Complete the flowchart by drawing an organic structure in the box below.

(b) Identify reagent A.

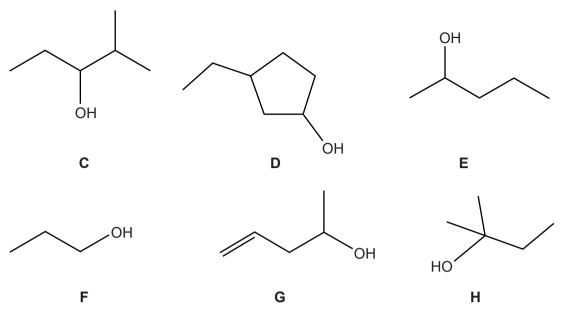
.....[1]

- (c) In the flowchart, reaction R forms a mixture of two alcohols that are structural isomers of $\rm C_5H_{12}O$.
 - (i) State the reagents and conditions needed for **reaction R**.

.....[1]

(ii) What is meant by the term structural isomers?

.....


(iii) Draw the two structural isomers of C₅H₁₂O formed in **reaction R**.

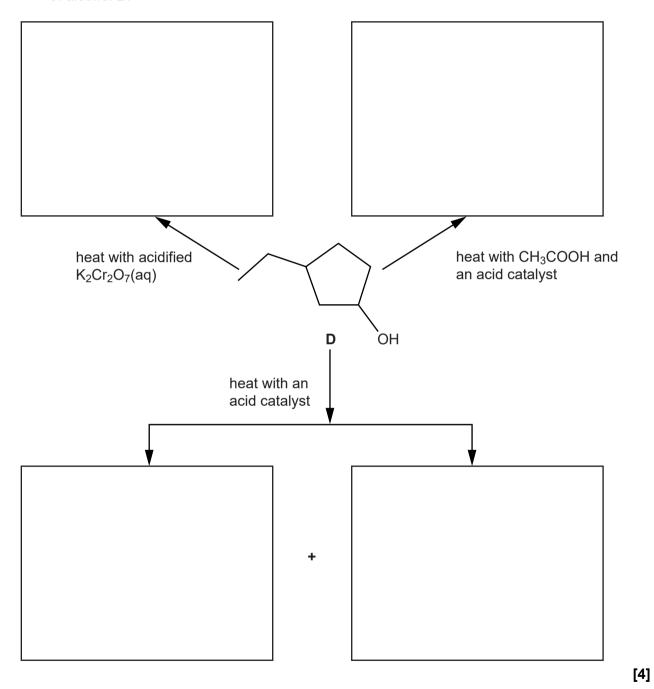
[1]

	(IV)	isomers formed.)
		[2	
(4)	Dos	cribe the oxidation reactions of propan-1-ol when using a suitable oxidising agent.	.,
(d)			
	Indic	cate how the use of different reaction conditions can control which organic product forms	3 .
	Inclu	ide reagents, observations and equations in your answer.	
	In yo	our equations, use structural formulae and use [O] to represent the oxidising agent.	
			••
	•••••		
			••
		[6	;]

[Total: 14]

2 The skeletal formulae of six alcohols, **C**, **D**, **E**, **F**, **G** and **H**, are shown below.

(a)	(i)	Which two	alcohols	are structural	isomers of	of one another?
(a)	(')	VVIIICII LVVO	aiconois	are structurar	130111613	n one anomer:


` ,	` '		
			[1]
	(ii)	Which alcohol is a tertiary alcohol?	
			[1]
	(iii)	Which alcohol can be oxidised to a carboxylic acid using acidified K ₂ Cr ₂ O ₇ ?	
			[1]
(b)	(i)	What is the molecular formula of alcohol G ?	
			[1]
	(ii)	What is the name of alcohol C ?	
			[1]
(c)	The	alcohols are members of a homologous series.	

(c)

Explain the term homologous series.

(d) Alcohol D is reacted with three different reagents.

Complete the flowchart below to show the organic product(s) formed in each of the reactions of alcohol ${\bf D}$.

[Total: 11]

3 Epoxyethane, C_2H_4O , is a synthetic intermediate that is used to make ethane-1,2-diol and some polymers. The structure of epoxyethane is shown below.

- (a) The controlled catalysed reaction of ethene with oxygen forms epoxyethane as the only product.
 - (i) Write the equation for this reaction.

[1]

(ii) When burnt in excess oxygen, ethene completely combusts.

Write the equation for the complete combustion of ethene.

.....[1]

(b) Epoxyethane reacts with water in the presence of an acid catalyst to form ethane-1,2-diol.

The mechanism for this reaction is shown below.

(i) Draw dipoles on the carbon and oxygen atoms on the displayed formula of epoxyethane.

$$H \longrightarrow C \longrightarrow C \longrightarrow H$$

O´ [1]

(ii)	The mechanism uses the 'curly arrow' model.	
	What does a 'curly arrow' represent?	
(iii)	What type of bond fission occurs in step 2 ?	
	Explain your answer.	
		. [2]
(iv)	How can you tell that water is behaving as a nucleophile in step 3 ?	
(v)	How does the mechanism show that H ⁺ ions act as a catalyst in this reaction?	
	Refer to the steps in the mechanism in your answer.	
		. [1]
(vi)	Epoxyethane reacts with methanol, CH ₃ OH, to form a compound with the mole	cular

(vi) Epoxyetnane reacts with methanol, CH_3OH , to form a compound with the molecular formula $C_3H_8O_2$.

Suggest the structure of this compound.

Ethane-1,2-diol is much less volatile than ethanol.
Suggest why.
[2]
Ethane-1,2-diol reacts with an excess of ethanoic acid, $\mathrm{CH_3COOH}$, in the presence of an acid catalyst. A compound is formed with the molecular formula $\mathrm{C_6H_{10}O_4}$.
Draw the structure of this compound.
[2]
Ethane-1,2-diol reacts with warm acidified potassium dichromate(VI). A number of different organic products are formed.
Draw the displayed formulae of two of these organic products.
[2]
[Total: 15]

4 The alcohols are an example of an homologous series.

The table shows the boiling points for the first four members of straight-chain alcohols.

alcohol	structural formula	boiling point / °C
methanol	CH ₃ OH	65
ethanol	CH ₃ CH ₂ OH	78
propan-1-ol	CH ₃ CH ₂ CH ₂ OH	97
butan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ OH	118

(a)	(1)	what is the general formula of a member of the alcohol homologous series:
		[1]
	(ii)	Deduce the molecular formula of the alcohol that has 13 carbon atoms per molecule.
		[1]
(b)	Alco	phols contain the hydroxyl functional group.
	Wh	at is meant by the term functional group?
		[2]
(c)	(i)	At room temperature and pressure, the first four members of the alcohol homologous series are liquids whereas the first four members of the alkanes homologous series are gases.
		Explain this difference.
		[3]

	(ii)	Methylpropan-1-ol and butan-1-ol are structural isomers. Methylpropan-1-ol has a lower boiling point than butan-1-ol.
		Suggest why.
		[2]
(d)	Alco	phols, such as methanol, can be used as fuels.
	(i)	Write equations for the complete and incomplete combustion of methanol.
		complete:
		incomplete:[2]
	(ii)	Suggest what conditions might lead to incomplete combustion of methanol.
		[1]
	(iii)	In addition to its use as a fuel, methanol can be used as a solvent and as a petrol additive to improve combustion.
		State another large-scale use of methanol.
		[1]
(e)		an-1-ol can be oxidised by heating under reflux with excess acidified potassium aromate $\left(\mathrm{VI}\right) .$
		te an equation for the reaction that takes place. e [O] to represent the oxidising agent.
		[2]

(f)	But	an-1-ol is one of the structural isomers of C ₄ H ₁₀ O.		
	(i)	Write the name and draw the structure of the structural isomer of $\rm C_4H_{10}O$ that is a tertiary alcohol.		
		name:		
		structure:		
		[2		
	(ii)	Draw the structure of the structural isomer of $C_4H_{10}O$ that can be oxidised to form butanone.		
		[1]		
		[Total: 18		