Chains, Energy and Resources **Modern Analytical Techniques**

1. Alcohol **E** is one of the following alcohols.

butan-2-ol ethane-1,2-diol 2-methylpentan-3-ol propan-1-ol propan-2-ol

A student oxidises alcohol **E** by heating under reflux with excess acidified potassium dichromate(VI). An organic product **F** is isolated.

The mass spectrum of the alcohol **E** is shown below.

The infrared spectrum of the organic product **F** is shown below.

- Name or draw the structures of the alcohol E and the organic product F.
- Write an equation for the reaction of alcohol E with acidified potassium dichromate(VI).

Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).

In your answer, you should make clear how each structure fits with the information given above.

[Total 7 marks]

2. Alcohols A, B, C and D are shown below.

Compound **A** is ethanol, a very useful alcohol. (a)

> Identify the two main methods used in the industrial production of ethanol. Write an equation for each method.

[4]

- (b) A student heated each alcohol, A–D, with acidified potassium dichromate(VI) as the oxidising agent. With alcohols A, B and C, the colour turned from orange to green.
 - (i) Identify the organic product and write a balanced equation for the reaction of alcohol **B** with acidified potassium dichromate(VI).

Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).

organic product:

balanced equation:

[2]

(ii) The organic product obtained from **C** was analysed by infrared (IR) spectroscopy.

The IR spectrum of the product is shown below.

wavenumber / cm⁻¹

		Use your <i>Data Sheet</i> to identify the organic product. Explain your reasoning.	
		organic product:	
		reasoning	
			[3]
(c)		student heated alcohol D with ethanoic acid in the presence of an acid lyst. An organic product E was formed with a fruity smell.	
	(i)	Name alcohol D .	
			[1]
	(ii)	Name the functional group in the organic product E .	
			[1]
	(iii)	Draw the structure of the organic product E .	

[2]

[Total 13 marks]

3.	A student carried out an investigation to compare the rates of hydrolysis of 1-iodopropane and 1-bromopropane. The student heated hot aqueous sodium hydroxide with each halogenoalkane and found that 1-iodopropane was hydrolysed faster.					
	The	equati	on for the reaction with 1-iodopropane is shown below.			
			$CH_3CH_2CH_2I + OH^- \rightarrow CH_3CH_2CH_2OH + I^-$			
	(a)	(i)	Outline the mechanism for this hydrolysis of 1-iodopropane.			
			Show curly arrows and relevant dipoles.			
				[3]		
		(ii)	State the name of this type of mechanism.			
				[1]		
	(b)	Expla	ain why 1-iodopropane is hydrolysed faster than 1-bromopropane.			

[2]

[Total 6 marks]

4. An analytical chemist was provided with a compound **J** which has an unbranched carbon skeleton. After analysis, the chemist obtained the following results.

type of analysis	evidence
infrared spectroscopy	broad absorption at 3350 cm ⁻¹
percentage composition by mass	C, 70.59%; H, 13.72%; O, 15.69%
mass spectrometry	molecular ion peak at m/z = 102.0

Use this information to suggest all the possible structures for the ${\bf unbranched}$ compound ${\bf J}.$

In your answer you should make clear how your explanation is linked to the evidence.
[Total 8 marks]

5.	Bromobutane, CH ₃ CH ₂ CH ₂ CH ₂ Br, can be reacted with hot aqueous sodium hydroxide
	to prepare butan-1-ol.

The butan-1-ol produced can be analysed by mass spectrometry.

(i)	Predict two fragment ions that you would expect to see in the mass spectrum of butan-1-ol and state the <i>m</i> / <i>z</i> value of each ion.	
		[0]
(ii)	State a use of mass spectrometry outside of the laboratory.	[2]
		[1]
	[Total :	3 marks1

- **6.** Compound **X** is an atmospheric pollutant emitted from fuel combustion of petrol and diesel vehicles. Compound **X** is a potent human carcinogen.
 - Analysis of compound X showed the following percentage composition by mass:
 C, 88.89%; H, 11.1%.
 - Mass spectrometry showed a molecular ion peak at m/z = 54.
 - Compound X reacts with H2 in the presence of a nickel catalyst in a 1 : 2 molar ratio.

Analyse and interpret this information to determine a possible structure for compound ${\bf X}$.

Show all your working.

[Total 5 marks]

7.	(a)	Buta	n-1-ol can be oxidised to form butanal.	
		(i)	State a suitable oxidising mixture for this reaction.	
				[2]
		(ii)	State the colour change you would see during this oxidation.	
			from to	[1]
	(b)	infra-	mple of the butanal from (a) was analysed using infra-red spectroscopyred spectrum contained an absorption in the region 1680–1750 cm ⁻¹ but contain a broad absorption in the region 2500–3300 cm ⁻¹ .	
		Refe	er to the Data Sheet for Chemistry provided.	
		(i)	What does the absorption in the region 1680–1750 cm ⁻¹ indicate?	
				[1]
		(ii)	What does the absence of a broad absorption in the region 2500–3300 cm ⁻¹ indicate?	
				[1]
		(iii)	The reaction in (a) was carried out using distillation and not reflux.	
			Explain why.	
				[2]
			[ТС	otal 7 marks]
8.	Com	pound	d E can be oxidised to form a carboxylic acid.	
	(i)	State	e a suitable oxidising mixture for this reaction.	
				101
				[2]

(ii) Write a balanced equation for this oxidation of compound **E**.

Use [O] to represent the oxidising mixture.

$$H_3C$$
 $C = C$ CH_2OH compound \mathbf{E}

[3]

(iii)	Explain how compound E and the carboxylic acid could be distinguished by
	infra-red spectroscopy.

[1]

[Total 6 marks]

9. (a) When ethanol is heated with acidified potassium dichromate(VI) solution, it can be oxidised to form either ethanal, CH₃CHO (Fig. 1), or ethanoic acid, CH₃COOH (Fig. 2).

Fig. 1 Fig. 2

The boiling points of ethanol, ethanal and ethanoic acid are given in the table below.

	CH ₃ CH ₂ OH	CH₃CHO	CH₃COOH	
boiling point/ °C	78	21	118	

Use this table of boiling points to explain

	(i)	why the organic product is likely to be ethanal if the apparatus shown in Fig. 1 is used,	
			[2]
	(ii)	why the organic product is likely to be ethanoic acid if the apparatus shown in Fig. 2 is used.	
			[2]
(b)		a balanced equation for the oxidation of ethanol to ethanoic acid. Use (O) present the oxidising agent.	
			ro1
			[2]

(c) The ethanal collected using the apparatus shown in Fig. 1 was analysed by infra-red spectroscopy. Use your *Data Sheet* to justify which of the three spectra shown below is most likely to be that of ethanal.

The organic product collected when using the apparatus shown in Fig. 1 is most
ikely to be that shown by spectrum because

[3]

[Total 9 marks]

10. A sample of prop-2-en-1-ol was oxidised and an infra-red spectrum of the organic product was obtained.

By referring to your Data Sheet, decide whether acrolein, CH_2 ==CHCHO, or acrylic acid, CH_2 ==CHCOOH, was formed.

The infra-red spectrum above is of	
because	

[Total 3 marks]

11. Citronellol, $C_{10}H_{20}O$, occurs naturally in both rose and geranium oils. The structural and skeletal formulae of citronellol are shown below.

structural formula

skeletal formula

(a) Name the **two** functional groups present in citronellol.

..... and

[2]

- (b) The functional groups in citronellol can be identified either by chemical tests or by infrared spectroscopy.
 - (i) State which of the two functional groups you named in (a) is:
 - 1 identified when bromine is added to citronellol,
 - 2 more easily identified from the infra-red spectrum.

(ii) State what you would **see** when bromine is added to citronellol.

(iii) Draw the skeletal formula of the organic product formed when bromine is added to citronellol.

[1]

[1]

[1]

(iv) The infra-red spectrum of citronellol is shown below. Mark on this spectrum, with the letter **X**, the absorption that confirms the presence of the functional group that is most easily identified from this spectrum.

[1]

(c)		tion of a sample of citronellol, $C_{10}H_{20}O$, with hydrogen in the presence of a yst results in the formation of a saturated compound $\bf C$.	
	(i)	Suggest a catalyst for this reaction.	
			[1]
	(ii)	Determine the molecular formula of the saturated compound C .	
			[1]
	(iii)	Construct a balanced equation for this reaction.	
			[1]
		[Total 9 mark	
		, $C_{10}H_{18}O_{\rm r}$ is a fragrant oil which is found in lavender. The structural and the mulae of lavandulol are shown below.	
	CH ₃		
H₃C Ó	` _C	C CH OH OH	
		H ₃ C	
	stı	H ructural formula skeletal formula	
(a)	(i)	Identify two different functional groups in lavandulol.	
		and	
			[2]
	(ii)	Why does lavandulol not have <i>cis-trans</i> isomerism?	

.....

12.

[1]

(b) Lavandulol, $C_{10}H_{18}O$, also reacts with bromine to form a saturated organic product.

State what you would see in this reaction and deduce the molecular formula of the organic product.

observation

[1]

molecular formula[2]

(c) Lavandulol could be converted into an ester X, which is also found in lavender oil.

ester X

State a reagent and a catalyst that could be used to form ester **X** from lavandulol.

reagent

[1]

catalyst

[1]

(d) Lavanduloi can be oxidised to produce either compound Y or compound Z.

lavandulol compound
$$\mathbf{Y}$$
 $C_{10}H_{16}O$ COOH
$$\mathbf{C}_{10}H_{16}O$$

(i)	Write a balanced equation for the oxidation of lavandulol to produce compound Z . Use the molecular formulae given above and use [O] to represent the oxidising agent.	
		[2]

(ii) An infra-red spectrum of either compound \mathbf{Y} or compound \mathbf{Z} was obtained and was found to contain an absorption between $1680-1750~\text{cm}^{-1}$. However, there was no broad absorption between $2500-3300~\text{cm}^{-1}$.

By referring to your *Data Sheet*, use this information to deduce whether the infra-red spectrum was of compound ${\bf Y}$ or of compound ${\bf Z}$. Show your reasoning.

The infra-red spectrum was of compound because

[2]

[Total 12 marks]