1. The table below shows enthalpy changes of formation, $\Delta_f H$.

Compound	TiCl ₄ (1)	H ₂ O(1)	TiO ₂ (s)	HCl(g)
$\Delta_{\rm f}H$ / kJ mol ⁻¹	-804	-286	-945	-92

What is the value of the enthalpy change of reaction, $\Delta_r H$, for the reaction in the following equation?

$$TiCl_4(l) \ + \ 2H_2O(l) \ \rightarrow \ TiO_2(s) \ + \ 4HCl(g)$$

- $\mathbf{A} \qquad -63 \text{ kJ mol}^{-1}$
- $\mathbf{B} \qquad -53 \text{ kJ mol}^{-1}$
- C $+53 \text{ kJ mol}^{-1}$
- **D** $+63 \text{ kJ mol}^{-1}$

Your answer	

Enthalpy values are provided below. 2.

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$
 $\Delta_{\Gamma}H = -9 \text{ kJ mol}^{-1}$

$$\Delta_r H = -9 \text{ kJ mol}^{-1}$$

Bond	Bond enthalpy /kJ mol ⁻¹
H–H	+436
I-I	+151

What is the bond enthalpy, in kJ mol⁻¹, of the H–I bond?

- **A** -596
- -298 В
- C +298
- D +596

Your answer			[1]
-------------	--	--	-----

3. A student plans to determine the enthalpy change of **reaction 3.1** shown below.

$$Na_2O(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l)$$
 reaction 3.1

This enthalpy change can be determined indirectly using Hess' Law from the enthalpy changes of **reaction 3.2** and **reaction 3.3** shown below.

$$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$$
 reaction 3.2

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$$
 $\Delta_r H = -57.6 \text{ kJ mol}^{-1}$ reaction 3.3

The student will determine the enthalpy change of reaction 3.2 as outlined below.

- Weigh a bottle containing Na₂O(s) and weigh a polystyrene cup.
- Add about 25 cm³ of water to the polystyrene cup and measure its temperature.
- Add the Na₂O(s), stir the mixture, and measure the maximum temperature reached.
- Weigh the empty bottle and weigh the polystyrene cup with the final solution.

Mass readings

Mass of bottle + Na ₂ O(s) Mass of empty bottle	= 16.58g = 15.34g
Mass of empty polystyrene cup	= 21.58 g
Mass of polystyrene cup + final solution	= 47.33 g

Temperature readings

Initial temperature of water	$= 20.5 ^{\circ}\text{C}$
Maximum temperature of final solution	= 55.5 °C

The density and specific heat capacity, *c*, of the solution are the same as for water.

(a)*	Calculate the enthalpy change of reaction 3.2 and the enthalpy change of reaction 3.1 .
	Show all your working.
	[6]
(b)	The uncertainty in each temperature reading is ±0.1 °C.
	The uncertainty in each mass reading is ±0.005 g.
	Determine whether the mass of $\mathrm{Na}_2\mathrm{O}$ or the temperature change has the greater percentage uncertainty.
	Show all your working.
	[2]

(c)		gest a modification to this experiment, using the same apparatus, which would reduce percentage errors in the measurements.
	Exp	olain your reasoning.
		rol
		[2]
(d)		lium oxide, $\rm Na_2O$, can be prepared by the redox reaction of $\rm NaNO_2$ and sodium metal. ogen gas is also formed.
	(i)	What is the systematic name for NaNO ₂ ?
		[1]
	(ii)	Using oxidation numbers, with signs, show the element that is oxidised and the element that is reduced in this reaction.
		Element oxidised
		Oxidation number change from to
		Element reduced
		Oxidation number change from to
	(iii)	Construct the equation for this reaction.
		Equation[1]

PhysicsAndMathsTutor.com

- **4.** Which enthalpy change(s) is/are endothermic?
 - 1 The bond enthalpy of the C–H bond
 - 2 The second electron affinity of oxygen
 - 3 The standard enthalpy change of formation of magnesium
 - **A** 1, 2 and 3
 - B Only 1 and 2
 - C Only 2 and 3
 - **D** Only 1

Your answer [1]

© OCR 2018 Turn over

5. The equation for the combustion of ${\rm C_7H_8}$ is shown in the following equation.

$$\mathrm{C_7H_8(I)} \ + \ 9\mathrm{O_2(g)} \ \rightarrow \ 7\mathrm{CO_2(g)} \ + \ 4\mathrm{H_2O(I)}$$

Enthalpy changes of formation are shown in the table.

Substance	C ₇ H ₈ (I)	CO ₂ (g)	H ₂ O(I)	
$\Delta_{\rm f}H/{\rm kJmol^{-1}}$	+12	-394	-286	

Calculate the enthalpy of combustion, in $kJ \, mol^{-1}$, for the hydrocarbon $C_7 H_8$.

- **A** -3914
- **B** -692
- **C** +692
- **D** +3914

Your answer		[1]
ioui aliswei		ני	1

6.

This	s que	estion is about magnesium, bromine and magnesium bromide.	
(a)		ative atomic mass is defined as 'the weighted mean mass compared with 1/12th mass con-12'.	s of
	Exp	plain what is meant by the term weighted mean mass.	
			[1]
(b)	(i)	Draw a 'dot-and-cross' diagram for MgBr ₂ .	
		Show outer electron shells only.	
			[2]
	(ii)	Calculate the total number of ions in 1.74g of magnesium bromide, MgBr ₂ .	
		Give your answer to 3 significant figures.	
		number of ions =	[3]

(c)* Table 16.1 shows some physical properties of magnesium, bromine and magnesium bromide.

Substance	Melting point/°C	Electrical conductivity		
Substance	Meiting point/ C	Solid	Liquid	
Magnesium	711	Good	Good	
Bromine	-7	Poor	Poor	
Magnesium bromide	650	Poor	Good	

Table 16.1

Explain the physical properties shown in Table 16.1 using your knowledge of structure an bonding.
Additional answer space if required
Additional answer space in required

OCR (A) Chemistry A-Level - Enthalpy Changes		PhysicsAndMathsTutor.com	

© OCR 2020 Turn over

(d) The enthalpy change of hydration of bromide ions can be determined using the enthalpy changes in **Table 16.2**.

Enthalpy change	Energy/kJ mol ⁻¹
1st ionisation energy of magnesium	+736
2nd ionisation energy of magnesium	+1450
atomisation of bromine	+112
atomisation of magnesium	+148
electron affinity of bromine	-325
formation of magnesium bromide	-525
hydration of bromide ion	to be calculated
hydration of magnesium ion	-1926
solution of magnesium bromide	-186

Table 16.2

(i) An incomplete energy cycle based on **Table 16.2** is shown below.

On the dotted lines, add the species present, including state symbols.

(ii)	Using your completed energy cycle in 16(d)(i) , calculate the enthalpy change of hydration of bromide ions.
	of Stoffling folia.
	enthalpy change of hydration = kJ mol ⁻¹ [2]
(iii)	Write the equation for the lattice enthalpy of magnesium bromide and calculate the lattice enthalpy of magnesium bromide.
	Equation
	Calculation
	lattice enthalpy =kJ mol ⁻¹ [3]

- 7. Propane, C_3H_8 , (boiling point $-42\,^{\circ}C$) is used as 'camping gas'. A student plans to determine the enthalpy change of combustion of propane, $\Delta_c H$ (C_3H_8), by two methods.
 - (a) The student first carries out an experiment using the apparatus below.

Results

Mass of propane burner before burning/g	99.218
Mass of propane burner after burning/g	98.976
Initial temperature/°C	21.60
Maximum temperature reached/°C	46.10

(i) Determine the enthalpy change of combustion of propane, in kJ mol⁻¹.Give your answer to 3 significant figures.

$$\Delta_{c}H(C_{3}H_{8}) = kJ mol^{-1}$$
 [3]

(ii)	The student finds that the experimental enthalpy change $\Delta_{\rm c}H$ (C ₃ H ₈) is much less exothermic than the accurate standard enthalpy change $\Delta_{\rm c}H$ (C ₃ H ₈) in databases.
	One reason could be that the student's experiment had not been carried out under standard conditions.
	Suggest two other reasons for this difference in enthalpy change.
	1
	2
	[11]

© OCR 2020 Turn over

(b)* The student determines the standard enthalpy change of combustion of propane using the bond enthalpies in the table. An experiment is not needed.

Bond	Bond enthalpy /kJ mol ⁻¹
C-H	+413
C-C	+347
C=O	+805
O=O	+498
О-Н	+464

The bond enthalpies can be used to determine the standard enthalpy change of reaction, $\Delta_r H$, for **equation 3.1**:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$
 Equation 3.1

Enthalpy change of vaporisation, $\Delta_{\text{vap}}H$

The standard enthalpy change of vaporisation of water, $\Delta_{\text{vap}}H$, is the enthalpy change for the conversion of 1 mol of $H_2O(I)$ into 1 mol of $H_2O(g)$ under standard conditions:

$$H_2O(I) \rightarrow H_2O(g)$$
 $\Delta_{vap}H = +40.65 \, kJ \, mol^{-1}$

Determine the standard enthalpy change of combustion of propane (boiling point using the $\Delta_{\rm r}H$ value for equation 3.1 and $\Delta_{\rm vap}H$ for water.	–42°C) [6]
Additional answer space if required	