|     |      | anufacture of methanol, carbon dioxide and hydrogen are reacted together in the revers<br>shown below. | sible |
|-----|------|--------------------------------------------------------------------------------------------------------|-------|
|     |      | $CO_2(g) + 3H_2(g) \Longrightarrow CH_3OH(g) + H_2O(g)$ $\Delta H = -49 \text{ kJ mol}^{-1}$           |       |
| (a) | Des  | cribe and explain the effect of increasing the pressure on the reaction <b>rate</b> .                  |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        | [2]   |
| (b) | Stat | e le Chatelier's principle.                                                                            |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
| (c) |      | n pressures and low temperatures would give a maximum equilibrium yield of methan                      | ol.   |
|     | (i)  | Explain this statement in terms of le Chatelier's principle.                                           |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        | [3]   |
|     | (ii) | Explain why the actual conditions used by the chemical industry might be different.                    |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        |       |
|     |      |                                                                                                        | [2]   |

Methanol,  $\mathrm{CH_3OH}$ , is an important feedstock for the chemical industry.

1

- (d) The manufacture of methanol uses a catalyst.
  - Sketch a labelled diagram of the Boltzmann distribution on the grid provided.
  - Label your axes.
  - Using your Boltzmann distribution, explain how the catalyst increases the rate of reaction.



|     |                                                                     | . [4] |
|-----|---------------------------------------------------------------------|-------|
| (e) | Explain why the use of a catalyst can reduce the demand for energy. |       |
|     |                                                                     |       |
|     |                                                                     |       |
|     |                                                                     | F41   |

[Total: 13]

| 2 | (a) | Reaction r | ates ca | n be | increased | or | decreased | by | changing | conditions | of | temperature | and |
|---|-----|------------|---------|------|-----------|----|-----------|----|----------|------------|----|-------------|-----|
|   |     | pressure.  |         |      |           |    |           |    |          |            |    |             |     |

(i) Explain how increasing the temperature increases the rate of reaction.
Include a labelled sketch of the Boltzmann distribution, on the grid below.
Label the axes.



Your answer needs to be clear and well organised using the correct terminology.



|     | (ii) | Describe and explain the effect of decreasing the pressure on the rate of a reaction.                                                                                                               |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                                     |
|     |      | [2]                                                                                                                                                                                                 |
| (b) | Cata | alysts are used to speed up chemical reactions.                                                                                                                                                     |
|     | (i)  | Write an equation for an industrial preparation of ethanol which involves the use of an enzyme in yeast.                                                                                            |
|     |      | State a suitable temperature for this reaction and <b>one</b> other essential condition.                                                                                                            |
|     |      | equation                                                                                                                                                                                            |
|     |      | temperature°C.                                                                                                                                                                                      |
|     |      | condition[2]                                                                                                                                                                                        |
|     |      | [4]                                                                                                                                                                                                 |
|     | (ii) | Catalytic converters are used to decrease the emission of nitrogen monoxide and carbon monoxide from the internal combustion engine. These two gases react together on the surface of the catalyst. |
|     |      | Write an equation for this reaction.                                                                                                                                                                |
|     |      | [1]                                                                                                                                                                                                 |
|     |      | [Total: 9]                                                                                                                                                                                          |

3 Poly(propenenitrile) is used to make acrylic fibres for clothing.

Poly(propenenitrile) is a polymer manufactured from propenenitrile.

propenenitrile

(a) Draw a section showing **two** repeat units of poly(propenenitrile).

|     |                                                                               | [1] |
|-----|-------------------------------------------------------------------------------|-----|
| (b) | Explain why this manufacture of poly(propenenitrile) has a 100% atom economy. |     |
|     |                                                                               |     |
|     |                                                                               | [1] |

| ( | c) | Propenenitrile | e is manufactured | from propene      | as shown i | n the equat   | tion |
|---|----|----------------|-------------------|-------------------|------------|---------------|------|
| ١ | ·ι | i roperieriume | c is manufactured | i ilolli propelie | as showin  | II tilo oquat |      |

$$C_3H_6(g) + NH_3(g) + 1\frac{1}{2}O_2(g) \rightleftharpoons CH_2CHCN(g) + 3H_2O(g) \Delta H = -540 \text{ kJ mol}^{-1}$$

The conditions used are 450 °C and 2.5 atmospheres in the presence of a catalyst.

Describe and explain, using le Chatelier's principle, the effect on the position of equilibrium of the following changes:

- a temperature above 450 °C
- a pressure above 2.5 atmospheres
- the absence of a catalyst.

| In your answer you should link the effects you describe with your explanations. |
|---------------------------------------------------------------------------------|
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| [5]                                                                             |

| (d) | A factory is able to make 11.13 kg of propenenitrile from 220 mol of propene.           |
|-----|-----------------------------------------------------------------------------------------|
|     | Calculate the percentage yield of the reaction to form propenenitrile from propene.     |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     | percentage yield =% [2]                                                                 |
| (e) | The chemical industry uses temperature and catalysts to control the rate of reactions.  |
|     | Using Boltzmann distribution diagrams, explain the effect on the rate of a reaction of: |
|     | <ul><li>increasing the temperature</li><li>adding a catalyst.</li></ul>                 |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |

| [7]         |
|-------------|
| [Total: 16] |

| Hyc | rogen has many industrial uses including making margarine and ammonia.                                  |     |
|-----|---------------------------------------------------------------------------------------------------------|-----|
| Нус | rogen can be made by the reaction between methane and steam.                                            |     |
|     | $CH_4(g) + H_2O(g) \iff CO(g) + 3H_2(g) \qquad \Delta H = +210 \text{ kJ mol}^{-1}$                     |     |
| (a) | The pressure of the equilibrium mixture is <b>increased</b> .                                           |     |
|     | Explain what happens to the position of the equilibrium.                                                |     |
|     |                                                                                                         |     |
|     |                                                                                                         |     |
|     |                                                                                                         | [2] |
| (b) | The temperature of the equilibrium mixture is <b>increased</b> .                                        |     |
|     | Explain what happens to the position of the equilibrium.                                                |     |
|     |                                                                                                         |     |
|     |                                                                                                         |     |
|     |                                                                                                         | [2] |
| (c) | The reaction is actually carried out in the presence of a nickel catalyst at a pressure 30 atmospheres. | 0   |
|     | (i) Suggest why the manufacturer uses a pressure of 30 atmospheres.                                     |     |
|     |                                                                                                         |     |
|     |                                                                                                         |     |
|     |                                                                                                         | [1] |
|     |                                                                                                         |     |

4

|     | (ii) | The nickel catalyst increases the rate.                                                                                             |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------|
|     |      | Use a labelled diagram of the Boltzmann distribution of molecular energies to explain why                                           |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      | [3]                                                                                                                                 |
| (d) |      | hemical factory uses 200 tonnes of methane a day. The factory produces 68.4 tonnes or rogen per day by reacting methane with steam. |
|     |      | $CH_4(g) + H_2O(g) \iff CO(g) + 3H_2(g)$                                                                                            |
|     | Cal  | culate the percentage yield of hydrogen.                                                                                            |
|     | Give | e your answer to <b>three</b> significant figures. (1 tonne = $1 \times 10^6$ g)                                                    |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      |                                                                                                                                     |
|     |      | n and and a signal of books on                                                                                                      |
|     |      | percentage yield of hydrogen = % [3]                                                                                                |

|      | carbon monoxide produced in the equation below can be reacted with hydrogen to make hanol.  |
|------|---------------------------------------------------------------------------------------------|
|      | $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$                                      |
| (i)  | Construct the equation for the reaction of carbon monoxide with hydrogen to make methanol.  |
|      | [1]                                                                                         |
| (ii) | Suggest <b>two</b> reasons why it is important to use the carbon monoxide to make methanol. |
|      |                                                                                             |
|      |                                                                                             |
|      |                                                                                             |
|      | [2]                                                                                         |
| Des  | cribe how hydrogen can be used in the manufacture of margarine.                             |
|      |                                                                                             |
|      |                                                                                             |
|      |                                                                                             |
|      | [2]                                                                                         |
|      | [Total: 16]                                                                                 |
|      |                                                                                             |
|      | (i) (ii) Des                                                                                |

| Pet | rol ar | nd diesel are both complex mixtures of hydrocarbons used as fuels in transport.                                                                              |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) |        | rol contains some branched chain alkanes.  number of carbon atoms per molecule varies between five and nine.                                                 |
|     | Nan    | ne one branched chain alkane with between five and nine carbon atoms.                                                                                        |
|     |        | [1]                                                                                                                                                          |
| (b) |        | en petrol burns in an internal combustion engine the exhaust gases contain ${\rm CO_2}$ , ${\rm CO}$ , ${\rm NO_2}$ , ${\rm H_2O}$ and unburnt hydrocarbons. |
|     | (i)    | What effect does the absorption of infrared radiation have on the bonds in ${\rm CO_2}$ molecules in the atmosphere?                                         |
|     |        | [1]                                                                                                                                                          |
|     | (ii)   | Why is CO present in the exhaust gases?                                                                                                                      |
|     |        |                                                                                                                                                              |
|     | (iii)  | Both NO and CO are atmospheric pollutants.                                                                                                                   |
|     | . ,    | For each pollutant, describe one environmental problem.                                                                                                      |
|     |        | NO                                                                                                                                                           |
|     |        |                                                                                                                                                              |
|     |        | CO                                                                                                                                                           |
|     |        | [2]                                                                                                                                                          |
| (c) |        | st cars are fitted with a catalytic converter which catalyses the exothermic reaction between and CO to form two less harmful gases.                         |
|     | (i)    | Name the two gases formed and write an equation for this reaction.                                                                                           |
|     |        |                                                                                                                                                              |
|     |        |                                                                                                                                                              |
|     |        | [2]                                                                                                                                                          |

5

| 1) | The catalyst in a catalytic converter increases the rate of reaction.                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
|    | Explain, using an enthalpy profile diagram and the Boltzmann distribution model, how the use of a catalyst increases the rate of reaction. |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    |                                                                                                                                            |
|    | [7]                                                                                                                                        |
|    |                                                                                                                                            |

| Biodiesel is being developed as a substitute for diesel from crude oil.                               |
|-------------------------------------------------------------------------------------------------------|
| Biodiesel is a methyl ester of a long chain carboxylic acid. The flow chart shows how it is produced. |
| plants $ ightarrow$ plant oil $ ightarrow$ long chain carboxylic acids $ ightarrow$ biodiesel         |
| Describe the benefits and disadvantages of changing from diesel to biodiesel.                         |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
| [3]                                                                                                   |
| [Total: 17]                                                                                           |
|                                                                                                       |

(d) Many lorries and some cars use diesel powered engines.