	cals called 'acids' have been known throughout history. The word acid comes from the Latin s' meaning sour. Dilute sulfuric acid, H ₂ SO ₄ , is a common laboratory acid.
(a) (i	State the formulae of two ions released when sulfuric acid is in aqueous solution.
	[2]
(ii	A student adds a sample of solid potassium carbonate, $\rm K_2CO_3$, to an excess of dilute sulfuric acid.
	Describe what the student would see and write the equation for the reaction which takes place.
	[3]

1

(b)	Dilu	te sulfuric acid reacts with alkalis such as sodium hydroxide.
	Soli	d sodium hydroxide is known as caustic soda. It has a household use as a drain cleaner.
	A st	udent believes a box of caustic soda has been accidentally contaminated.
	•	To prove this, the student dissolves 2.00 g of the impure caustic soda in water and the solution is made up to $250\mathrm{cm}^3$.
	•	$25.0\mathrm{cm^3}$ of this solution of caustic soda is neutralised by $24.60\mathrm{cm^3}$ of $0.100~\mathrm{moldm^{-3}}$ dilute sulfuric acid.
		$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$
	(i)	Calculate the amount, in moles, of H ₂ SO ₄ used.
		answer = mol [1]
	(ii)	Determine the amount, in moles, of NaOH in the 25.0 cm ³ used.
	 \	answer = mol [1]
	(iii)	Calculate the percentage, by mass, of NaOH in the impure caustic soda.
		answer =[3]
		[Total: 10]

In an atom	the elect	rons occ	upy sub-s	shells in o	order of i	ncreasin	g energy.			
(a) Comp	lete the ta	able belo	w to show	v the ord	er in whi	ch the ne	ext two su	ıb-shells	are filled	
	1s	2s	2р	3s	3р	4s				
			ine	creasing	energy -	\rightarrow				[41]
	/hat is me	eant by a	n <i>orbital'</i>	ctrons od	ccupying	the p orb	oitals in o	one chlori	ne atom.	
						a	answer =			[1]

2

(d) The successive ionisation energies of aluminium are shown in the table below. Some of these ionisations involve the removal of an electron from an s sub-shell.

ionisation energy / kJ mol ⁻¹	578	1817	2745	11578	14831	18378	23296	27460	31862	38458	42655
ionisation number	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th

(i)	State all the s sub-shells.	ionisation	numbers	that	involve	the	removal	of	an	electron	from
											[2]
ii)	Write the equa		presents th	e thire	d ionisati	on ei	nergy of A	l.			
											[2]
										[To	tal: 81

(i)	Com	piete the tab	ole below to sho	w the atomic struct	ures ot ⁴Mg and	a ²⁹ IVIg.
			protons	neutrons	electrons	
		²⁴ Mg				
		²⁵ Mg				
						[2]
(ii)	A saı	mple of mag	nesium contain	ed ²⁴ Mg: 78.60%; ²	²⁵ Mg: 10.11%; ²⁶	Mg: 11.29%.
	Calc	ulate the rel	ative atomic ma	ss of this sample o	f Mg.	
	Give	your answe	r to four signific	ant figures.		
				answer =		[2]
(iii)	Defin	ne the term <i>i</i>	relative atomic r			[2]
(iii)	Defin	ne the term i	relative atomic r			[2]
(iii)	Defin 	e the term	relative atomic r			[2]
(iii)	Defir	e the term i	relative atomic r			[2]
(iii)	Defin	e the term	relative atomic r			[2]

(b)	The	reaction between magnesium and sulfuric acid is a redox reaction.
		$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$
	(i)	Use oxidation numbers to identify which element has been oxidised.
		Explain your answer.
		element oxidised
		explanation
		[2]
	(ii)	Describe what you would see when magnesium reacts with an excess of sulfuric acid.
		[2]
(c)	Eps	som salts can be used as bath salts to help relieve aches and pains.
	Eps	som salts are crystals of hydrated magnesium sulfate, MgSO ₄ • x H ₂ O.
		ample of Epsom salts was heated to remove the water. 1.57g of water was removed ving behind 1.51g of anhydrous ${\rm MgSO_4}$.
	(i)	Calculate the amount, in mol, of anhydrous MgSO ₄ formed.
		amount = mol [2]
	(ii)	Calculate the amount, in mol, of H ₂ O removed.
	(,	Salodiate the amount, in moi, of Fig.
		amount = mol [1]
	(iii)	Calculate the value of \mathbf{x} in MgSO ₄ • \mathbf{x} H ₂ O.
	···· <i>)</i>	Calcalate the value of X in ingo of Xiii 20.
		v- [41

[Total: 15]

Caio	Julii	r carbonate, CaCO ₃ , reacts with hydrochloric acid as shown in the equation below.	
		$CaCO_3(s) \; + \; 2HC\mathit{l}(aq) \; \longrightarrow \; CaC\mathit{l}_2(aq) \; + \; H_2O(I) \; + \; CO_2(g)$	
(a)	7.50	0×10^{-3} mol CaCO $_3$ reacts with 0.200 mol dm $^{-3}$ HC $\it l$.	
	(i)	Calculate the volume, in cm 3 , of 0.200 mol dm $^{-3}$ HC 1 required to react with 7.50 \times 10 $^{-3}$ n CaCO $_3$.	nol
	(ii)	answer =	[2]
(b)	Wh	answer = cm ³ en heated strongly, CaCO ₃ decomposes.	[1]
		ite an equation, including state symbols, for the thermal decomposition of CaCO ₃ .	[2]
		lcium oxide reacts with water and with nitric acid. Ite the formula of the calcium compound formed when:	
	(i)	calcium oxide reacts with water,	[1]
	(ii)	calcium oxide reacts with nitric acid.	- [1]
	. ,	[Total:	
		[Total.	'1

			nd its compounds.	is about louille al	que
		ppic mass of 127.	with a relative isot	s a stable isotope	lodi
elease		a relative isotopic n a nuclear power plar			
			ve isotopic mass.	e the term <i>relati</i> v	(i)
[2					
-	es in an atom of iodi	f sub-atomic particle	show the number one-131.	plete the table to n an atom of iodi	(ii)
-	es in an atom of iodi		show the number of	n an atom of iodi	(ii)
•	es in an atom of iodi	f sub-atomic particle	show the number one-131.	-	(ii)

(b) In the human body, iodide ions, I⁻, are necessary for the thyroid gland to function correctly. Some countries add potassium iodide, KI, to table salt as a source of iodide ions.

The Guideline Daily Amount, GDA, of iodide ions is $70.0 \,\mu g$ ($1 \,\mu g = 1 \times 10^{-6} \, g$).

(i) Calculate the mass of KI, in µg, that would be needed to supply the GDA of iodide ions. Give your answer to three significant figures.

	(ii)	Apart from reasons of cost, suggest why some countries do not add KI to table salt.
		[1]
(c)	Wh	en chlorine gas is bubbled through aqueous potassium iodide, a reaction takes place.
	(i)	Write the ionic equation for this reaction.
		[1]
	(ii)	At room temperature, chlorine is a gas and iodine is a solid. When heated together, chlorine reacts with iodine to form iodine monochloride, $ICl.$
		${ m IC} l$ has a higher boiling point than ${ m C} l_2$.
		Explain, in terms of the intermolecular forces present, why IC $\!l$ has a higher boiling point than C $\!l_2$.
B		In your answer, you should use appropriate technical terms spelled correctly.
		[2]
		[Total: 9]

6	Cal	cium	chloride, $CaCl_2$, can be made by different
rea	ction	S.	
	A s	tuder	nt prepared hydrated calcium chloride by carrying out the following experiment.
		Ste	p 1 The student added an excess of a solid calcium compound, X , to dilute hydrochloric acid. The mixture fizzed as the solid reacted.
		Ste	p 2 The student filtered the mixture to give an aqueous solution of ${\sf CaC}l_2$.
		Ste	p 3 On evaporation, colourless crystals of hydrated calcium chloride were formed.
	(a)		scribe a chemical test which the student could have carried out to prove that the filtrate tains aqueous chloride ions.
			[2]
	(b)	A fr	iend of the student suggested that solid X was calcium oxide.
			te one reason why the student's friend was $incorrect$ and suggest a possible identity of d ${f X}.$
		reas	son:
		soli	d X :[2]
	(c)	Нус	Irated calcium chloride has a molar mass of 219.1g mol ⁻¹ .
		(i)	What is meant by the term <i>hydrated</i> calcium chloride?
			[1]
		(ii)	Determine the formula of the hydrated calcium chloride.
			You must show your working.
			, ,
			formula =[2]

(d)	Calcium chloride can also be formed by directly reacting calcium with chlorine gas.
	Draw a 'dot-and-cross' diagram to show the bonding in calcium chloride.
	Show outer electrons only.
	[2]
(e)	The student decided to prepare barium bromide, BaBr ₂ , by directly reacting barium with bromine gas.
	The student was unsure whether this preparation would be more reactive or less reactive than the preparation of ${\rm CaC}l_2$ in (d).
	Explain why the student was unsure of the relative reactivity of the two preparations.
	[2]
	[Total: 11]
	goodan i i