Hyd	rated	d aluminium sulfate, $Al_2(SO_4)_3 \bullet x H_2O$, and chlorine, Cl_2 , are used in water treatment.
(a)	A st	udent attempts to prepare hydrated aluminium sulfate by the following method.
	•	The student heats dilute sulfuric acid with an excess of solid aluminium oxide.
	•	The student filters off the excess aluminium oxide to obtain a colourless solution of $\mathrm{Al_2(SO_4)_3}$.
	(i)	State the formulae of the two main ions present in the solution of $Al_2(SO_4)_3$.
		and
	(ii)	Write an equation for the reaction of aluminium oxide, Al_2O_3 , with sulfuric acid.
		Include state symbols.
		[2]
((iii)	What does '• x H ₂ O' represent in the formula A <i>l</i> ₂ (SO ₄) ₃ • x H ₂ O?
		[1]
((iv)	The student heats 12.606 g of $Al_2(SO_4)_3$ • x H_2O crystals to constant mass.
		The anhydrous aluminium sulfate formed has a mass of 6.846 g.
		Use the student's results to calculate the value of \boldsymbol{x} .
		The molar mass of $Al_2(SO_4)_3 = 342.3 \mathrm{g} \mathrm{mol}^{-1}$.

 $x = \dots [3]$

1

(b)	cold	tudent tests chlorine gas with damp blue litmus paper. The litmus paper first turns a red our and is then bleached. A reaction takes place between chlorine and water in the damp us paper.
	(i)	Write the equation for the reaction between chlorine and water.
		Explain why the damp litmus paper turns a red colour as a result of this reaction.
		[2]
	(ii)	Bleach is made by reacting chlorine with cold dilute aqueous sodium hydroxide.
		Suggest the formula of the ion responsible for bleaching.
		[1]
		[Total: 11]

2 Sulfur, atomic number 16, is found within the Earth's crust. Sulfur is released into the atmosphere at times of volcanic activity.

A sample of sulfur from a volcano was analysed to give the following composition of isotopes.

isotope	abundance (%)
³² S	95.0
³³ S	0.76
³⁴ S	4.22

(a)	Define the term relative atomic mass.
	[3]
(b)	Calculate the relative atomic mass of the sample of sulfur.
	Give your answer to two decimal places.

(c) John Dalton, an early 19th century scientist, believed that elements were made up of tiny particles called atoms which could not be divided. Nowadays, chemists know of the existence of sub-atomic particles in atoms and in ions.

Complete the table to show the number of sub-atomic particles in the ^{33}S atom and $^{34}\text{S}^{2-}$ ion.

	protons	neutrons	electrons
³³ S			
³⁴ S ²⁻			

	Hov	w many atoms of sulfur are there in 0.0120 mol of S ₈ molecules?	
		answer = atoms	[2]
(e)	The	e only intermolecular forces in solid sulfur are van der Waals'.	
	(i)	Describe how van der Waals' forces arise.	
			[3]
	(ii)	Suggest why there are no other intermolecular forces in solid sulfur.	
			[1]
(f)	Soc	dium thiosulfate is a compound of sulfur used to develop photographs.	
	Нус	drated sodium thiosulfate has the formula Na ₂ S ₂ O ₃ •5H ₂ O.	
	Wh	at is the oxidation number of sulfur in Na ₂ S ₂ O ₃ •5H ₂ O?	
			[1]

(d) Solid sulfur exists as a lattice of $\rm S_8$ molecules. Each $\rm S_8$ molecule is a ring of eight atoms.

(g)	A so	tudent heats 12.41g of hydrated sodium thiosulfate, Na ₂ S ₂ O ₃ •5H ₂ O, to remove the water crystallisation. A white powder called anhydrous sodium thiosulfate forms.							
	(i)	(i) What does the term anhydrous mean?							
		[1]							
	(ii)	What is the relative formula mass of Na ₂ S ₂ O ₃ •5H ₂ O?							
		[1]							
	(iii)	Calculate the expected mass of anhydrous sodium thiosulfate that forms.							
		mass = g [2]							
(h)	Sul	fur hexafluoride, SF ₆ , exists as non-polar covalent molecules with an octahedral shape.							
	(i)	Explain why a molecule of SF ₆ has an octahedral shape.							
		[2]							
	(ii)	Fluorine has a higher electronegativity than sulfur, yet SF ₆ molecules are non-polar.							
		Explain what is meant by the term $\it electrone gativity$ and suggest why ${\rm SF}_6$ molecules are non-polar.							
		[3]							

3 This question is about a model of the structure of the at

(a)	A model	used	by	chemists	includes	the	relative	charges,	the	relative	masses	and	the
	distributio												

Complete the table below.

particle	relative charge	relative mass	position within the atom
proton			
neutron			
electron		1/2000	shell

[1]

(b)	Early studies	of ionisation	energies	helped	scientists	to	develop	а	model	for	the	electron
	structure of th	e atom.										

Define the term first ionisation energy.	
	•
[3	3]

(c) A modern model of the atom arranges electrons into orbitals, sub-shells and shells.

Complete the following table showing the maximum number of electrons which can be found within each region.

region	number of electrons
a 2p orbital	
the 3s sub-shell	
the 4th shell	

(d)			iodic Table arrang order the elements	_		order of th	neir atomic r	number. Wher	1
	Exp	olain what is m	neant by the term	periodicit	y .				
								[1]	ĺ
(e)		his part, you emistry A.	need to refer to	the <i>Perio</i>	dic Table of	the Elem	ents in the <i>L</i>	Data Sheet fo	r
	Froi	m the first 18	elements only , ch	noose an	element whic	ch fits the	following des	scriptions.	
	(i)	An element v	with an isotope th	at can be	represented	as ¹⁴ ₆ X.		[1]	l
	(ii)	The element	which has the str	rongest m	etallic bondi	ng in Perio	od 3	[1]	l
	(iii)	The element	which forms a 3-	- ion with	the same ele	ectron stru	icture as Ne.	[1]	l
	(iv)	The element	which has the sn	nallest thi	rd ionisation	energy.		[1]	l
	(v)	The element	with the first six s	successiv	e ionisation e	energies s	shown below,	in kJ mol ^{−1} .	
		738	1		541	629	995		
								[1]	l
								[Total: 13]	l

-	_	ium is the eighth most abundant element in the Earth's crust and many rocks are a source esium compounds.
Mag Italy		ium carbonate, MgCO ₃ , is present in dolomite, a rock found in the Dolomite mountains in
test	-tube	nt collected two equal-sized samples of dolomite. These samples were put into two labelled es, A and B . Tube A was heated until there was no further change in mass and was then to cool. Tube B was left unheated.
(a)	Wri	te the equation for the action of heat on the magnesium carbonate present in tube A .
(b)		student wanted to make magnesium chloride crystals. The student added an excess of m dilute hydrochloric acid to tube A and to tube B .
	(i)	Write the equation for the reaction of magnesium carbonate in tube ${\bf B}$ with dilute hydrochloric acid.
		Include state symbols.
		[2]
	(ii)	State one similarity and one difference the student would see between the reactions in the two tubes.
		similarity
		difference
		[2]
	(iii)	From the solution in each tube, the student obtained crystals with the formula ${\rm MgC}\it{l}_{\rm 2}{}^{\rm +}6{\rm H}_{\rm 2}{\rm O}.$
		Calculate the relative formula mass of MgCl ₂ •6H ₂ O.
		Give your answer to one decimal place.
		relative formula mass =[1]

	Show outer electrons only.				
					[2]
(c)	A compound containing magnesi A sample of this compound weig	um, silicon and ohing 5.27g was	oxygen is also found to have	present in rock the following co	types in Italy
	mass: Mg, 1.82	g; Si, 1.05g;	O, 2.40 g.		
	Calculate the empirical formula of	the compound.			
	Show your working.				
	•	empirical formula	a =		[2]

(iv) Draw a 'dot-and-cross' diagram to show the bonding in ${\rm MgC}\,l_2$.

(d)	Pha	armacists sell tablets containing magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_2$, to combat indigestion.
		tudent carried out an investigation to find the percentage by mass of ${\rm Mg(OH)}_2$ in an gestion tablet. The student reacted the tablet with dilute hydrochloric acid.
		$Mg(OH)_2(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + 2H_2O(l)$
		student found that 32.00cm^3 of $0.500 \text{mol dm}^{-3} \text{HC} l$ was needed to react with the Mg(OH) ₂ 500 mg tablet. [1 g = 1000 mg].
	(i)	Calculate the amount, in mol, of HCl used.
		amount = mol [1]
	(ii)	Determine the amount, in mol, of Mg(OH) ₂ present in the tablet.
		amount = mol [1]
	(iii)	Determine the percentage by mass of Mg(OH) ₂ present in the tablet.
		answer = % [3]
		[Total: 15]

	isotope	protons	neutrons	electrons	
	¹¹⁸ Sn				
(i) C	complete the table				
(ii) lı	n terms of sub-ato	mic particles, how	would atoms of ¹	¹²⁰ Sn differ from ato	ms of ¹¹⁸
	elative atomic mas				
Define	e the term <i>relative</i>	atomic mass.			
		ınd on Dartmoor o		of tin	
(c) A hro	ize-age silicia loc		•	or un.	
	late the number o				
Calcu	late the number o our answer to thr	ee significant figu	103.		
Calcu		ee significant figu			
Calcu		ee significant figu			
Calcu		ee significant figu			
Calcu		ee significant figu			

(d)	Tin ore, known as cassiterite, contains an oxide of tin. This oxide contains 78.8% tin by mass Calculate the empirical formula of this oxide. You must show your working.
	answer =[2]