Question Number	Acceptable Answers		Reject	Mark
1(a)	First mark Electronic configurations: Cu ²⁺ is [Ar] 3d ⁹ and Zn ²⁺ is [Ar] 3d ¹⁰ IGNORE 4s ⁰ / full electronic configuration of Ar (1 Second mark If both EC are correct: EITHER Copper (is a transition element because it) forms a (stable) ion with an incompletely / partially filled d-subshell / orbital(s) ALLOW forms an ion with unpaired d electron(s) OR Zinc only forms an ion with a full d-subshell / all d orbitals full (1) If one or both EC are incorrect: Copper (is a transition element because it) forms a (stable) ion with an incompletely filled d-subshell / orbital(s) and zinc only forms an ion with a full d-subshell / all d orbitals full (1)	1)	d shell sub- shell / orbital other than 3d	(2)

Question Number	Acceptable Answers	Reject	Mark
1(b)	CuCl + AgCl \rightleftharpoons CuCl ₂ + Ag OR Cu ⁺ + Ag ⁺ \rightleftharpoons Cu ²⁺ + Ag OR CuCl + Ag ⁺ \rightleftharpoons Cu ²⁺ + Ag + Cl ⁻ ALLOW \rightarrow (1) IGNORE state symbols / half-equations Stand alone mark (Equilibrium moves to the right in sunlight) producing silver (1) IGNORE copper(II) compounds	Copper (metal)/ copper(I) compounds	(2)

Question Number	Acceptable Answers	Reject	Mark
1 (c)	Shape – square planar		(2)
	CI C		
	ALLOW Cls joined by lines in a square		
	ALLOW tetrahedral shape (1)		
	IGNORE brackets and/or charges		
	Bonding - dative (covalent) /co-ordinate		
	ALLOW shown on diagram as arrows from Cl to Cu (1)		

Question Number	Acceptable Answers	Rej ect	Mark
1 (d)(i)	$Cu + CuCl2 + 2HCl \rightarrow 2[CuCl2]- + 2H+$		(1)
	OR $Cu + Cu^{2+} + 4CI^{-} \rightarrow 2[CuCI_{2}]^{-}$ OR		
	Cu + $[Cu(H_2O)_6]^{2+}$ + $4Cl^- \rightarrow 2[CuCl_2]^-$ + $6H_2O$		
	Cu + $[Cu(H_2O)_6]^{2+}$ + 4HCl \rightarrow 2 $[CuCl_2]^-$ + 6H ₂ O + 4H ⁺ OR		
	$Cu + CuCl2 + 2Cl- \rightarrow 2[CuCl2]-$		
	IGNORE state symbols, even if incorrect / missing brackets		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	Disproportionation is the simultaneous oxidation and reduction of a (single) species / atom / element / ion (to form 2 different oxidation states) (1)		(2)
	IGNORE reactant / substance / molecule / compound		
	Not disproportionation because two different species (of copper) are oxidised and reduced		
	OR Not disproportionation as (start with 2 different oxidation states of copper and) only produces 1 oxidation state		
	ALLOW Disproportionation is the other way around / this is reverse disproportionation / comproportionation (1)		

Question Number	Acceptable Answers	Reject	Mark
1(d)(iii)	The d-subshell is full / d ¹⁰ OR all d orbitals are full ALLOW d shell is full (1)	d orbital any number other than 3(d)	(2)
	d-d transitions cannot take place OR Electrons cannot move between d orbitals	d-subshell / d orbitals do not split	
	OR Electrons cannot be promoted / excited to higher d orbital(s) IGNORE just 'movement to different energy level'		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	State symbols are required	Equations with NaOH / Na+/	(1)
	IGNORE missing square brackets	SO ₄ ²⁻ ions	
	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$		
	$\begin{array}{c} \text{OR} \\ [\text{Cu}(\text{H}_2\text{O})_6]^{2^+}(\text{aq}) + 2\text{OH}^-(\text{aq}) \rightarrow \\ & \text{Cu}(\text{OH})_2(\text{s}) + 6\text{H}_2\text{O}(\text{I}) \\ \text{OR} \\ [\text{Cu}(\text{H}_2\text{O})_6]^{2^+}(\text{aq}) + 2\text{OH}^-(\text{aq}) \rightarrow \\ & \text{Cu}(\text{OH})_2(\text{H}_2\text{O})_4(\text{s}) + 2\text{H}_2\text{O}(\text{I}) \\ \text{OR} \\ \text{Cu}^{2^+}(\text{aq}) + 2\text{OH}^-(\text{aq}) + 4\text{H}_2\text{O}(\text{I}) \rightarrow \\ & \text{Cu}(\text{OH})_2(\text{H}_2\text{O})_4(\text{s}) \\ \text{ALLOW equations with } [\text{Cu}(\text{H}_2\text{O})_4]^{2^+}(\text{aq}) \end{array}$		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(ii)	Ligand exchange / ligand substitution / ligand replacement	Acid/base reaction	(1)
	·	Deprotonation	

Question Number	Acceptable Answers	Reject	Mark
1(f)(i)	Ligand has 2 atoms that can form (co-ordinate / dative covalent) bonds (to the metal ion) ALLOW Has 2 lone pairs that form (co-ordinate / dative covalent) bonds ALLOW Has 2 lone pairs that it donates (to the metal ion) ALLOW Forms 2 (co-ordinate / dative covalent) bonds (to the metal ion)	2 ligands attached to the ion Ionic bond Just 'has 2 lone pairs'	(1)
	Forms 2 (co-ordinate / dative covalent)		

Question Number	Acceptable Answers	Reject	Mark
1 (f)(ii)	First mark (there are) more particles / moles / species on the right (of the equation)	Molecules / atoms	(2)
	OR (there is an increase from) 4 particles / moles / species on the left of the equation to 7 on the right (1)	Incorrect numbers of particles / moles	
	Second mark (so) ΔS_{system} increases / is positive (and the reaction is thermodynamically feasible)		
	ALLOW ΔS_{total} is positive / increasing (and the reaction is thermodynamically feasible)		
	ALLOW (there is) an increase in entropy (and the reaction is thermodynamically feasible) (1)		
	IGNORE Just 'disorder increases'		

Total for Question 22 = 16 marks

Question Number	Acceptable Answers	Reject	Mark
2 (i)	Ni: $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^8 4s^2$ (1) Cu: $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^{10} 4s^1$ (1)		2
	ALLOW capital letters, subscripts for superscripts ALLOW 4s before 3d		
	Penalise omission of 3s ² 3p ⁶ once only if rest is correct		

Question Number	Acceptable Answers	Reject	Mark
2*(ii)	First electron removed is from 4s (in both atoms) (1)		2
	Second electron in Cu (is harder to remove so it is) EITHER closer to nucleus/in inner shell OR less shielded (1) IGNORE Comments about second electron being in full shell/ in a 3d shell/in a 3d orbital Reference to 3d ¹⁰ stability		

Question	Acceptable Answers	Reject	Mark
Number			
2a(iii)	(attraction on (3d) electrons increases due to) number of protons increasing / nuclear charge increasing		1
	IGNORE The charge density of the 2 ⁺ ions increases Effective nuclear charge		

Question Number	Acceptable Answers	Reject	Mark
2b(i)	$2Cu^+(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$ IGNORE Eqm sign for \rightarrow	Reverse equation Any equation involving	1
		electrons	

Question Number	Acceptable Answers	Reject	Mark
2b(ii)	Both white		2
	ALLOW (both) Colourless (1)		
	COMMENT Ignore states eg solution/precipitate		
	As have 3d ¹⁰ / have a full 3d sub-shell /ALL 3d orbitals are full		
	IGNORE (1)		
	Does not have partially filled d orbitals They do not absorb light		
	No d-d transitions occur		

Question Number	Acceptable Answers	Reject	Mark
2c	(Zinc) does not form a (stable) ion with incompletely/partially filled d orbitals ALLOW d sub-shell for d orbitals The only (stable) ion formed by zinc has full d sub-shell It does not form a (stable) oxidation state with incompletely/partially filled	Element has full d shells.	1
	d orbitals		

Question Number	Acceptable Answers	Reject	Mark
3 (a)	(A transition metal) forms ions /		1
	oxidation states with partially filled		
	/ incomplete d orbital(s) / d sub-shell		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)		Names without oxidation numbers.	4
	Y = hexahydroxochromate(III) (ions) / $[\text{Cr(OH)}_6]^{3^-}$ /tetrahydroxochromate(III) (ions) / $[\text{Cr(OH)}_4]^-$ / $[\text{Cr(H}_2\text{O})_2(\text{OH)}_4]^-$ (1)		
	Z = chromium(II) (ions) / chromium(II) sulfate / Cr^{2+} / $Cr^{2+}(aq)$ / $[Cr(H2O)6]2+ (1)$		
	ALLOW Name or formula of the compounds		
	IGNORE Omission of square brackets around complexes		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(ii)	$A = \text{ethanol } / C_2H_5OH / \text{ethanal } / CH_3CHO OR any primary or secondary alcohol or any aldehyde}$	ary (1)	CH₃COH	3
	B = zinc / Zn ALLOW magnesium / Mg	(1)	Alkali metals Tin / Sn	
	C = any acid (name or formula) IGNORE Omission of (aq) with acid formula	(1)	H ⁺ or H ₃ O ⁺ or acid	
	Concentration of acid			

Question	Acceptable Answers	Reject	Mark
Number			
3	$Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$		1
(b) (iii)	OR		
	Multiples		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(iv)	$(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2 + 4H_2O$ Allow multiples	(1)		3
	Chromium is reduced from (+)6 to (+)3	(1)		
	Nitrogen is oxidized from −3 to 0	(1)		
	Penalise use of 'changes' / 'increases' / 'decreases' for 'oxidises' or 'reduces' once only	è		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(v)	(chromium(II) ions) oxidized by (oxygen in the) air		1
	ALLOW Just 'oxygen'		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (i)	(A ligand is a) molecule or (negative) ion with a (lone) pair (of electrons) ALLOW Species / Compound / group (1) Which forms a dative covalent bond with a (central) metal ion or atom (to form a complex) (1)	Positive ion	2
	ALLOW (if no other marked scored) Electron pair donor		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	$Cr(H_2O)_6^{3+} + 6NH_3$ $\rightarrow Cr(NH_3)_6^{3+} + 6H_2O$ ALLOW $Cr(H_2O)_6^{3+} + 4NH_3$ $\rightarrow Cr(NH_3)_4(H_2O)_2^{3+} + 4H_2O$	Cr ³⁺ and Cr ³⁺ (aq)	2
	Correct formula for ammine (1) Rest of the equation correct (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (4s ⁰) (1) Accept [Ar]3d ⁵ (4s ⁰) (Ion) has an incompletely filled (3)d-orbital /		2
	sub-shell / unpaired d electron (1)		

Question Number	Acceptable Answers	Reject	Mark
*4 (b)	Gases adsorb onto / bind to catalyst (surface) (1)		4
	Allow gases are absorbed onto surface		
	Then react and desorb / leave (1)		
	Reaction could be faster because Any two These processes lower the activation energy (by providing an alternative route so a greater proportion of molecules react)		
	Bonds in reactant(s) are weakened	Just 'bonds in reactants are	
	 Reactants may be positioned in more favourable orientations 	broken'	
	Reactants can migrate towards each other on surface		
	Increases likelihood of molecules coming into contact / colliding		
	Adsorption onto surface means more reactant molecules in a given space		

Question Number	Acceptable Answers	Reject	Mark
4 (c)	E_{cell} for reaction is (+) 0.84 (V) (so will work) / E_{cell} for item 44 is more positive than for item 19 / illustrate using anti-clockwise rule (1)	Just 'because of the anti-clockwise rule'	4
	2Fe + O ₂ + 2H ₂ O \rightarrow 2Fe ²⁺ + 4OH ⁻ or 2Fe + O ₂ + 2H ₂ O \rightarrow 2Fe(OH) ₂ (1)		
	E_{cell} for reaction is (+)0.96 (V) (so will work) / E_{cell} for item 44 is more positive than for item 17 / illustrate using anti-clockwise rule (1)		
	$4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$ (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (d)	Lone pair(s) (from nitrogen(s)) (1) Forms dative / dative covalent / coordinate		2
	bond (with Fe ²⁺) (1)		

Question Number	Acceptable Answers	Reject	Mark
5(a)(i)	Any TWO of: complex ions / complexes (1) coloured ions / compounds / solutions (1) catalytic properties (1) paramagnetic (1) Allow coloured complexes (2) coloured complex compound (1) If a list appears with 1 or 2 correct properties followed by properties related to the element, then (1) mark only Ignore 'partially filled d-orbitals'	complex compounds	2

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	ignore absence of charge clearly octahedral (ignore bonds to the H in H ₂ O) (1) but allow some latitude in the symbols used to show the 3D structure. Wedges do not have to be exact - if used they are enough to show 3D if the axial bonds are lines The word 'octahedral' does not salvage a poor drawing dative (covalent) / coordinate (bond) (1) not just shown by an arrow lone pair (of electrons on the oxygen) (1) can be shown on the diagram		3

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	(+) 0.34 (V) OR (+) 0,34 V		1
	sign not needed		

Question Number	Acceptable Answers	Reject	Mark
5(b)(ii) QWC	(simultaneous) oxidation and reduction (1) Allow redox		2
	of a species / substance / reactant / compound / chemical / element (1)		

Question	Acceptable Answers	Reject	Mark
Number			
5(b)(iii)	- 0.66(V) (1)		2
	Allow TE from (b)(i)		
	reaction not feasible since the potential is negative (2^{nd} mark is for an answer consistent with sign of E°) (1)		