1 Which of the following gives the electronic configurations for a chromium atom and a chromium(II) ion?

		Cr	2+
×	A	[Ar]3d ⁴ 4s ²	[Ar]3d ⁴
×	В	[Ar]3d ⁵ 4s ¹	[Ar]3d⁴
×	С	[Ar]3d ⁴ 4s ²	[Ar]3d²4s²
×	D	[Ar]3d ⁵ 4s ¹	[Ar]3d³4s¹

(Total for Question = 1 mark)

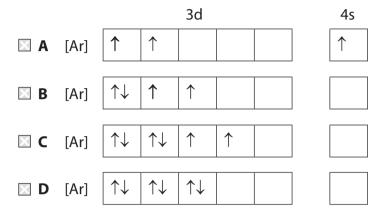
2 In which of the following ions does the metal have an oxidation number of +3?

- A MnO₄²⁻
- B VO²⁺
- \square **D** $[CrCl_2(H_2O)_4]^+$

(Total for Question = 1 mark)

3 What is the electronic configuration of the stable scandium ion?

- lacksquare A [Ar] $3d^0 4s^2$
- ☑ B [Ar] 3d¹ 4s¹
- ☑ D [Ar] 3d⁰ 4s⁰


4 The shapes of the complexes $[CrCl_4]^-$ and $[Pt(NH_3)_2Cl_2]$ are

		[CrCl₄]⁻	$[Pt(NH_3)_2Cl_2]$
X	Α	square planar	square planar
X	В	tetrahedral	tetrahedral
X	C	square planar	tetrahedral
X	D	tetrahedral	square planar

(Total for Question = 1 mark)

- 5 In which of the following ions does the metal have an oxidation number of +2?
 - A MnO₄²⁻
 - B VO²⁺
 - □ C [Fe(CN)₆]⁴⁻
 - \square **D** $[CrCl_2(H_2O)_4]^+$

6 The electronic configuration of iron is $[Ar]3d^64s^2$. What is the electronic configuration of the iron(II) ion, Fe^{2+} ?

(Total for Question = 1 mark)

- **7** Chromium has the electronic configuration [Ar]3d⁵4s¹. Which of the following compounds is **unlikely** to exist?
 - A K₃CrO₄
 - ☑ B CrO₂Cl₂

 - ☑ D KCrO₄

8 The shapes of the complexes $[CrCl_a]^-$ and $[CuCl_2]^-$ are

	[CrCl ₄] ⁻	[CuCl ₂] ⁻
⋈ A	tetrahedral	linear
⋈ B	square planar	linear
⊠ C	tetrahedral	V-shaped
⊠ D	square planar	V-shaped

(Total for Question = 1 mark)

9 Consider the following reaction.

$${\rm S_2O_8^{\ 2-}(aq)\ +\ 2I^-(aq)\ \rightarrow\ 2SO_4^{\ 2-}(aq)\ +\ I_2(aq)}$$

Which of the following ions could catalyse this reaction?

- **B** Al³⁺
- C Fe²⁺
- **D** Na⁺

10	EDTA ions form a d	complex with aque	eous nickel(II) ion	s as shown by	the equation

$$[Ni(H_2O)_6]^{2+}(aq) + (EDTA)^{4-}(aq) \implies Ni(EDTA)^{2-}(aq) + 6H_2O(I)$$

Aqueous nickel(II) ions also form a complex ion with ammonia as shown by the equation

$$[Ni(H_2O)_6]^{2+}(aq) + 6NH_3(aq) \rightleftharpoons [Ni(NH_3)_6]^{2+}(aq) + 6H_2O(l)$$

Aqueous nickel(II) ions form a more stable complex with EDTA ions than with ammonia because

- A six ammonia ligands cause steric hindrance around the central nickel(II) ion.
- **B** EDTA ions carry a negative charge whereas ammonia molecules do not.
- there is a large increase in entropy when aqueous nickel(II) ions react with EDTA ions, but not when aqueous nickel(II) ions react with ammonia.
- **D** ammonia molecules tend to evaporate from the solution of the complex whereas EDTA ions do not.

(Total for Question = 1 mark)

11 Which of the following shows the correct oxidation states of **chromium** in the ions given?

	[Cr(OH) ₆] ³⁻	CrO ₄ ²⁻	$[Cr(H_2O)_6]^{2+}$
⊠ A	-3	-2	+2
⊠ B	-3	+10	+2
⊠ C	+3	+8	+6
⊠ D	+3	+6	+2

		tion metal es does no					_		-	sts. Which of the following
X	3 A .	Adsorption	າ of rea	ctant	mole	cules o	on the	surf	ace of t	the metal.
X	В	Bond brea	king in	the re	eactar	nt mol	ecules	5.		
X	C	Desorption	of pro	duct	mole	cules f	rom tl	ne su	ırface o	of the metal.
X	D.	An overall	change	e in th	e oxio	dation	numk	oer o	f the m	netal.
									(T	otal for Question = 1 mark)
	13	Γhe electro	onic str	ucture	e of th	e chro	omium	า(III)	ion, Cr³	s+, is
	_		_		3d				4s	
	×	A [Ar]	<u> </u>						$\uparrow\downarrow$	
	×	B [Ar]	\uparrow	↑					\uparrow	
	X	C [Ar]	↑	↑						
	X	D [Ar]	$\uparrow\downarrow$	↑						
										(Total for Question = 1 mark)
14		anium has					• 1s²2s	² 2p ⁶ .	3s²3p ⁶ 3	3d ² 4s ² . Which of the following
	×	A K_3TiF_6								
	X	B $K_2 \text{TiF}_6$								
	X	C K ₂ Ti ₂ O ₅	;							
	X	D K ₂ TiO ₄								
										(Total for Question = 1 mark)

15 The ligands that form complex ions are either neutral, like NH₃, or negatively charged, like CN⁻. Nickel(II) ions, Ni²⁺, form complexes with both these ligands. The bonding between Ni²⁺ and the ligands in these complexes is

		NH ₃	CN-
×	A	dative covalent	dative covalent
×	В	ionic	dative covalent
×	С	dative covalent	ionic
×	D	ionic	ionic

(Total for Question = 1 mark)

- **16** When excess aqueous ammonia is added to a solution containing Zn²⁺(aq) ions, a colourless solution is formed. This solution is colourless because

 - $oxed{\mathbb{B}}$ the d orbitals of Zn^{2+} in the complex formed are not split into different energy levels.
 - **C** the energy difference between the d orbitals of Zn²⁺ in the complex formed does not correspond to the visible region of the spectrum.
 - \square **D** the d orbitals of Zn²⁺ in the complex formed are full.

17	Fo	our complex ions have the following formulae:	
	A	Cu(edta) ²⁻	
	В	$Zn(H_2O)_6^{2+}$	
	C	Ni(NH ₃) ₆ ²⁺	
	D	CrCl ₄ ²⁻	
	(a)	Which complex ion is most likely to be tetrahedral in shape?	(1)
	X	\mathbf{A}	
	X	В	
	X	C	
	X	D	
	(b)	Which complex ion is most likely not to be coloured?	(1)
	X	\mathbf{A}	
	X	В	
	X	C	
	X	D	
		Each of these complex ions may be formed by ligand exchange from an aqua complex. For which complex ion is the entropy change of this reaction most positive?	(1)
	X	\mathbf{A}	(1)
	×	В	
	×	C	
	X	D	
		(Total for Question 3 marl	ks)

18	Which of the following successive ionization energies (values in kJ mol ⁻¹) could have
	come from a transition element?

(Total for Question = 1 mark)

19 Which of the following gives the electronic configuration for chromium and for the Cr³+ ion?

		Cr	Cr ³⁺
×	A	$[Ar]3d^44s^2$	$[Ar]3d^34s^0$
X	В	[Ar]3d ⁵ 4s ¹	[Ar]3d ² 4s ¹
×	C	[Ar]3d ⁵ 4s ¹	[Ar]3d ³ 4s ⁰
×	D	[Ar]3d ⁴ 4s ²	[Ar]3d ¹ 4s ²

(Total for Question = 1 mark)

- **20** Which of the following gives the colours of solutions containing $Cr_2O_7^{2-}$, CrO_4^{2-} , hydrated Cr^{3+} and hydrated Cr^{2+} , in this order?
 - ☐ A Yellow, orange, green, blue
 - **B** Orange, yellow, green, blue
 - C Orange, yellow, blue, green
 - **D** Orange, green, yellow, blue

(Total for Question = 1 mark)

21	The co	ompound $[Pt(NH_3)_2Cl_2]$ is
ļ	⊠ A	tetrahedral with no isomers.
	⊠ B	square planar with no isomers.
	⊠ C	tetrahedral with two isomers.
	⊠ D	square planar with two isomers.
		(Total for Question = 1 mark)
22 T	he hex	aaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}$, is blue because the water ligands
X	A	split the p -orbital energies and p - p electron transitions emit blue light.
X	В	split the d -orbital energies and d - d electron transitions absorb all but blue light.
×	C	split the p -orbital energies and p - p electron transitions absorb all but blue light.
×	D	split the d -orbital energies and d - d electron transitions emit blue light.
		(Total for Question = 1 mark)
23	Van	adium is classified as a transition metal. This is because vanadium
	X A	is a d-block element.
	⊠ B	has incompletely filled d orbitals.
		forms stable ions with incompletely filled d orbitals.
	⊠ D	forms stable ions in which it has different oxidation states.
		(Total for Question = 1 mark)

24 (Col	pp	er(II) sulfate solution is blue. This is because
×	ļ	A	excited electrons emit light in the blue region of the spectrum as they drop back to the ground state.
×	E	3	excited electrons emit light in the red region of the spectrum as they drop back to the ground state.
X	(electrons absorb light in the red region of the spectrum and the residual frequencies are observed.
X			electrons absorb light in the blue region of the spectrum and the residual frequencies are observed.
			(Total for Question = 1 mark)
C	hlc	rat	method of manufacturing hydrazine (N_2H_4) involves the action of sodium te(I) on excess ammonia at 443 K and 50 atm. The yield is normally around 80% just 1 part per million of copper(II) ions is present, the yield drops to 30%.
Т	he	m	ost likely explanation for this is the ability of copper(II) ions to
X] ,	Α	form complex ions with ammonia.
×]	В	catalyse reactions producing other nitrogen compounds.
×		C	reduce the hydrazine as it is formed.
×]	D	reduce the sodium chlorate(I).
			(Total for Question = 1 mark)

	Platinum forms a complex with the formula $Pt(NH_3)_2Cl_2$ and chromium forms a complex ion with the formula $CrCl_4^-$.				
((a) Considering the shapes of these complexes,				
	X	A	both complexes are square planar.	(1)	
	X	В	both complexes are tetrahedral.		
	X	C	Pt(NH ₃) ₂ Cl ₂ is tetrahedral and CrCl ₄ ⁻ is square planar.		
	X	D	Pt(NH ₃) ₂ Cl ₂ is square planar and CrCl ₄ ⁻ is tetrahedral.		
((b)	Со	nsidering the structures of these complexes,	(1)	
	X	Α	both complexes form stereoisomers.		
	X	В	neither complex forms a stereoisomer.		
	X	C	Pt(NH ₃) ₂ Cl ₂ forms a stereoisomer but CrCl ₄ ⁻ does not.		
	X	D	CrCl ₄ ⁻ forms a stereoisomer but Pt(NH ₃) ₂ Cl ₂ does not.		
((c)		nsidering the bonding between the central atom and the ligands in these mplexes,	(1)	
	X	A	the bonding in both complexes is dative covalent.	(-)	
	X	В	the bonding in both complexes is ionic.		
	X	C	the bonding in $Pt(NH_3)_2Cl_2$ is dative covalent and in $CrCl_4^-$ is ionic.		
	X	D	the bonding in $Pt(NH_3)_2Cl_2$ is ionic and in $CrCl_4^-$ is dative covalent.		
			(Total for Question = 3 mar	ks)	

		nsition metal complex $Pt(NH_3)_2Cl_2$ exists as two geometric isomers. This is the complex				
×	A i	s square-planar.				
×	B i	s tetrahedral.				
×	C	contains a double bond.				
\times	D i	s octahedral.				
		(Total for Question 1 mark)				
	A hydrated transition metal ion is colourless. Which of the following could be the electronic configuration of this ion?					
\boxtimes A	A [A	$Ar] 3d^54s^2$				
× I	B [A	$Ar] 3d^8$				
⊠ (C [A	$[3d^{10}4s^2]$				
\times I	D [A	$[3d^{10}]$				
		(Total for Question 1 mark)				
29 Which of the following species is not able to act as a ligand in the formation of transition metal complexes?						
×	3 A	$C_6H_5NH_2$				
×	В	NH_3				
×	C	NH ₂ CH ₂ CH ₂ CH ₂ NH ₂				
	D	$\mathrm{NH_4}^+$				
		(Total for Question 1 mark)				

30		element zinc, with electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² , is not regarded ransition element because			
[⊠ A	the oxide of zinc is amphoteric.			
[⊠ B	none of its ions has an unpaired electron in the <i>d</i> -subshell.			
[区 C	it does not readily form complex ions.			
[⊠ D	it has a boiling temperature low enough for it to be easily distilled.			
		(Total for Question 1 mark)			
31 What type of bonding occurs between the metal ion and ligand in the complex $[Cu(H_2O)_6]^{2+}$?					
X	A	Metallic			
X	В	Ionic			
X	C	Hydrogen			
X	D	Dative covalent			
		(Total for Question 1 mark)			