Question Number	Correct Answer				Reje	ect	Mark	
1								2
(a)(i)								
		CH ₂ CHCHCH ₂	СО	H ₂ O	HOOC(CH ₂)	₄COOH		
	Δ <i>Η</i> Įŗ	+109.9	-110.5	-285.8	-994.	3		
	/ kJ mol ⁻¹							
	জ /	278.7	197.6	69.9	250.0)		
	J mol ⁻¹ K ⁻¹							
	4 value	4 values correct (2) marks						
	3 / 2 v	alues correc	ct (1) ma	ark				
	0 / 1 v	alues correc	ct (0) ma	arks				

Question Number	Correct Answer	Reject	Mark
1 (a)(ii)	-994.3 - [+109.9 + (2 x -110.5) + (2 x -285.8)] (1)		2
	$= -311.6 (kJ mol^{-1})$ (1)		
	Allow TE from (a) NOTE If both -110.5 and -285.8 are not doubled, answer CQ = -707.9 (kJ mol ⁻¹) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Rejec t	Mark
1 (a)(iii)	250(.0) - [278.7 + (2 x 197.6) + (2 x 69.9)] (1)		2
	$= -563.7 \text{ (J mol}^{-1} \text{ K}^{-1}\text{)} $ (1)		
	Allow TE from (a)		
	NOTE If both 197.6 and 69.9 are not doubled, answer $CQ = -296.2$ (J mol ⁻¹ K ⁻¹) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Reject	Mark
$\frac{1}{(a)(iy)}$	$\Delta S_{surr} \text{ at } 298 \text{ K} = -\Delta H/T $ (1)		3
(4)(17)	= - (-311.6 x 1000) / 298		
	= (+) 1045.6 (J mol ⁻¹ K ⁻¹)		
	Allow TE from (a)(ii) e.g. $\Delta S_{surr} = (+)2375.5(0)$ (J mol ⁻¹ K ⁻¹) scores (2) if no doubling in (a)(ii) (1)		
	$\Delta S_{tot} = \Delta S_{surr} + \Delta S_{sys} / \Delta S_{tot} = 1045.6 - 563.7$		
	$/ \Delta S_{tot} = (+)$ 481.9 (J mol ⁻¹ K ⁻¹)		
	Allow TE from (a)(ii) and (a)(iii)		
	(1)		
	Allow correct answers given in kJ mol⁻¹ K⁻¹ e.g. 0.4819 kJ mol⁻¹ K⁻¹		
	Ignore SF except 1 SF		
	If candidates forget to convert Δ H into J mol ⁻¹ , then Δ S _{tot} = -562.7 (J mol ⁻¹ K ⁻¹) would score (2) if correct working is included		

Question	Correct Answer	Reject	Mark
Number			•
1	(Decrease in T)		3
(a)(v)	1 at marks consideration of AC		
	Ist mark: consideration of ΔS_{system}		
	DS _{system} is not (significantly) changed / is		
	constant		
	(1)		
	(-)		
	2nd mark: consideration of ΔS_{surr}		
	AS or All/T is more positive (larger /		
	ΔS_{surr} of $-\Delta H/T$ is more positive / larger /		
	COMMENT		
	'less negative'		
	(1)		
	(-)		
	3rd mark: consideration of ΔS_{total}		
	(So) increases AS / makes AS more		
	(50) increases ΔS_{tot} / indres ΔS_{tot} indre		
	(1)		
	(-)		
	NOTE		
	IF no reference / an incorrect reference		
	made to ΔS_{system} , then only the 2nd and 3rd		
	marks can be awarded		
	NOTE		
	If candidate states that ΔS_{surr} becomes less		
	+ ve , no M2		
	But if then states CQ that ΔS_{tot} decreases award M3 as a TE		

Question Number	Correct Answer	Reject	Mark
1 (b)	DIMINISHING:		2
	(Peak between) 1669 - 1645 (cm ⁻¹) (due to C=C)		
	OR		
	(Peak between) 3095 – 3010 (cm ⁻¹) (due to alkene C-H) (1)		
	INCREASING:		
	(Peak between) 1725 – 1700 (cm ⁻¹) (due to C=O in carboxylic acid)	1740 - 1720	
	OR		
	(Peaks due to alkane C-H bonds at)		
	EITHER 2962 – 2853 (cm ⁻¹)		
	OR		
	1485 – 1365 (cm ⁻¹)		
	ALLOW		
	(Peak between) 3300 – 2500 (cm ⁻¹) (due to O-H in carboxylic acid)	3750 - 3200	
	(1)		

Question Number	Correct Answer	Reject	Mark
1 (c)	(Makes it taste) sour / sharp / tart	fruity	1
	IGNORE 'acidic' / 'bitter'	sweet(er)	
	NOTE	none	
	Contradictory answers (e.g. 'sharp and sweeter') score (0)		

Question	Correct Answer	Reject	Mark
Number			
1 (d) (i)	1st mark:		3
	(% of oxygen =) 43.9 (%) (1)		
	2nd mark:		
	Amount of C = $49.3/12 = 4.1 \text{ (mol)}$ Amount of H = $6.8/1 = 6.8 \text{ (mol)}$ Amount of O = $43.9/16 = 2.7 \text{ (mol)}$ (1)		
	3rd mark:		
	Ratio 1.5 C : 2.5 H : 1 O (≡3 C : 5 H : 2 O)		
	ALLOW for 3rd mark: -		
	Decimal values that round up to these values (e.g. 1.497 C : 2.478 H : 1 O scores the 3rd mark)		
	(1)		
	ALLOW		
	$M_{\rm r}$ of C ₃ H ₅ O ₂ = 73 (g mol ⁻¹)		
	(1)		
	$%C = \frac{36}{73} \times 100 = 49.3\%$		
	and		
	$\%$ H = $\frac{5}{2}$ x 100 = 6.8% 73		
	(1)		
	%O = 43.9% ALLOW 43.8%		

Question Number	Correct Answ	ver		Reject	Mark
1 (d) (ii)	For 'Chemical shift' column, allow any range or any single value within range				4
	Feature of compound Q	Chemical shift / ppm	Splitting pattern		
	CH ₃	0.1 – 1.9	Triplet		
			(1)		
			Allow (splits into) three		
	CH ₂	1.7 – 3(.0)	Quartet (1)		
		(1)	Allow quadruplet / (splits into) four		
	он	10(.0) – 12(.0) (1)	singlet		

Question Number	Acceptable Answers	Reject	Mark
2(a)	(The energy / enthalpy change that accompanies the formation of)	'energy required' / 'energy needed' / 'energy it takes'	2
	one mole of a(n ionic) compound (1)		
	ALLOW as alternative for compound: lattice /crystal / substance / solid / product / salt		
	from (its) gaseous ions (1)	'from one mole of gaseous ions ' (no 2nd mark)	
	IGNORE References to 'standard conditions' or any incorrect standard conditions	'from gaseous elements ' (no 2nd mark)	
	ALTERNATIVE RESPONSE		
	If no mark(s) already awarded from above, can answer by giving:-		
	energy change / enthalpy change per		
	(1)		
	$2Na^{+}(g) + O^{2-}(g) \rightarrow Na_2O(s)$ (1)		
	NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'		

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	FIRST, CHECK THE FINAL ANSWER IF answer = -2520 (kJ mol ⁻¹) then award (2) marks, with or without working		2
	Otherwise look for		
	$-414 = (2 \times 108) + 249 + (2 \times 496) + (-141) + 790 + \Delta H_{LE}$ OR $\Delta H_{LE} = -414 - [(2 \times 108) + 249 + (2 \times 496) + (-141) + 790]$ OR A correct expression using letters e.g. F = (2)D + E + (2)C + A + B + G (1)	–1088 (kJ mol ⁻¹) scores (0) overall (as two errors)	
	$(=-414 - 2106) = -2520 (k \ mol^{-1})$	$(+)1088 (k mol^{-1})$	
	(1) NOTE	also scores (0) overall (as several errors)	
	ALLOW for 1 mark: -1692 (wrong sign for 414) -1916 (2 × 108 and 2 × 496 not used for Na ⁺) -2412 (2 × 108 not used for Na ⁺) -2024 (2 × 496 not used for Na ⁺) +2520 (wrong sign for final answer) -2802 (sign changed for 1st electron affinity of oxygen) -2395.5 (atomization of oxygen halved) NOTE Penalise incorrect units (e.g. kJ mol) ONCE only NO ECF from incorrect answers to		
	(b)(i)		

Question	Acceptable Answers		Reject	Mark
*2(c)	ALLOW reverse argument where appropriate First mark MgO more exothermic (than MgS) IGNORE 'greater' / 'higher' / 'larger'	(1)		4
	Second mark S ²⁻ larger than O ²⁻	(1)	" MgS is larger than MgO " S ^{2–} has a larger atomic radius than O ^{2–}	
	Third mark Charges on O^{2-} and S^{2-} same OR Charges on (all) ions same OR S^{2-} smaller charge density than O^{2-}			
	NOTE This mark is awarded if both formulae to the ions O^{2-} and S^{2-} are mentioned Fourth mark O^{2-} (forms) stronger (electrostatic) attractions (than S^{2-})	for (1)		
	IGNORE just 'stronger (ionic) bonds' Penalise ONCE ONLY the use of the word 'atom(s)' or 'molecule(s)'/ use of formulae such as 'Mg' 'O' 'O ₂ ', etc.	(1)		
	AND/OR Penalise ONCE ONLY use of words s as just 'magnesium' (instead of magnesium ions/Mg ²⁺) and/or just 'oxygen' (instead of oxide ions/O ²⁻) Mark each point independently	uch		

(Total for Question = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
3 (a)	$[:Li]^{+} (1) \begin{pmatrix} xx \\ xx xx \\ xx \end{pmatrix}^{-}$ (1)		2
	Accept all or mixture of dots and crosses		
	Check inner electrons present on lithium		
	If no element symbols but fully correct with Li first give 1 max		
	If no / incorrect charge(s) if the electrons are correct 1 max		
	If arrow drawn from third / outer shell electron on lithium to join electrons in iodine / iodide with correct charges scores 1 max		
	Brackets are not essential		

Question Number	Acceptable Answers		Reject	Mark
3 (b)	Li(s) and Li ⁺ (g) and I ⁻ (g)	(1)		3
	1/212(s) and 1(g)	(1)		
	(ΔH_{at}) [$\frac{1}{2}$ l ₂ (s)]	(1)		
	Notice the square brackets are essential for this mark			
	If wrong state for iodine element ie if $\frac{1}{2}I_2(g/I)$ and consistent $(\Delta H_{at})[\frac{1}{2}I_2(g/I)]$ allow third mark			
	If I(s) given for element and (ΔH_{at}) [I(s) allow third mark)]		
	If wrong state with monatomic iodine both the last two marks lost			
	If Li ⁺ (g) + e appears ignore electron			

Question Number	Acceptable Answers	Reject	Mark
3 (c)	First mark for one of:		2
	-270 = +159 + 107 + 520 + electron affinity - 759		
	Or		
	Electron affinity =		
	-270 - (159 + 520 + 107 - 759) (1)		
	OR Electron affinity =		
	-270 - 159 - 520 - 107 + 759 (1)		
	Second mark for:		
	(Electron affinity =)		
	-297 (kJ mol ⁻¹) (1)	Wrong unit	
	-297 (kJ mol ⁻¹) alone scores (2)	e.g.	
	NB providing method is recognisable with one transcription error eg 795 for 759 and the final answer is consistent 1 max		
	NB (+) 297 (kJ mol ⁻¹) 1 max		

Question Number	Acceptable Answers		Reject	Mark
3 (d)	(Experimental lattice energy is) more negative / exothermic (1))	Greater / less Increase /	3
	OR		decrease alone	
	Theoretical lattice energy is less negative / exothermic (1))		
	OR			
	Recognition that more energy released			
	(1))		
	Irrespective of first answer then, any two from:			
	Due to a degree of covalency (1))		
	Deviation from pure ionic model (in experimental value)			
	OR			
	The theoretical model is pure ionic bonding			
	(1)			
	Polarization / distortion of the iodide / negative ions (by the lithium ion). Can be shown by diagram1)		
	Iodine/ I / I ₂ ion is not acceptable but iodine / I anion is allowed			
	Note I_2 anion is not allowed			

Question Number	Acceptable Answers	Reject	Mark
3 (e)	Electron affinities become less negative / less exothermic / more positive (going down Group 7) (1)	Greater / less / Increase / decrease alone	2
	As (added) electron further from the nucleus	Any indication of ionization/	
	OR	removing an electron	
	More shielding / shielded (from the nucleus)		
	(1)		
	Second mark stands alone Ignore larger (ionic) radius / atom / ion / charge density		

Number		
41(a)1	$\begin{array}{l} MgCO_3(s) + 2HCl(aq) \to MgCl_2(aq) + H_2O(l) + \\ CO_2(g) \\ ALLOW \ MgCO_3(s) + 2H^*(aq) \to Mg^{2*}(aq) + CO_2(g) \\ + H_2O(l) \\ All \ formulae \ and \ balancing \ (1) \\ \\ State \ symbols \ -mark \ independently; \ can \ be \\ given \ even \ if \ eg \ MgCl_2 \ formula \ incorrect \ or \ for \end{array}$	2
	$H_2CO_3(aq)(1)$ $CO_3^{2-}(s) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(l)$ (1 mark max) ALLOW 1 missing/incorrect state symbol	

Question Number	Acceptable Answers	Reject	Mark
41(b)1	Any two from		2
	Bubbles (of gas)/ fizzing/ effervescence (1)	Carbon dioxide /gas given off	
	Solid disappears/ disintegrates /gets smaller /dissolves OR MgCO3 disappears (if given as solid in (i)) (1) IGNORE clear solution forms	Precipitate forms (no TE for MgCl ₂ (s))	
	Mixture gets warmer/cooler OR temperature change occurs/ heat change occurs(1)	Just "exothermic"	

Question Number	Acceptable Answers	Reject	Mark
41(c)1(i)1	Moles acid = $((25 \times 2/1000)) = 0.05/0.050 /$		1
	5x10 ⁻²		
	Ignore units and sf		

Question Number	Acceptable Answers	Reject	Mark
41(c)1(ii)1	Mass Mg CO ₃ = $((0.05 \times 84.3 \div 2)) = 2.1075/2.108$ /2.11/2.1 (g) ALLOW TE from (c)(i) and (a) ALLOW Moles acid x 84.3 ÷2 for TE(from (i) (1) (4.2(15)) if factor of 2 missing for TE from (a)) Ignore sf except 1 sf Ignore units	2 / 2.12(g)	1

.. .

Question Number	Acceptable Answers	Reject	Mark
41(c)1(iii)1	To ensure all acid reacts/ all acid is used up / to ensure product is neutral/ it (HCl) is neutralised	All reactants used up To ensure reaction is complete (without reference to HCl) To ensure yield is high To ensure magnesium carbonate is in excess	1

Question	Acceptable Answers	Reject	Mark
Number			
41(c)1(iv)1	Filter	Sieve	1
		Collect MgCl ₂ in filter	
	ALLOW centrifuge/ decant/ pour off /	paper	
	(use) filter paper	Use filter paper to dry	
		crystals	
		Evaporate	
	Ignore comments about heating solution first to		
	concentrate it		

Question Number	Acceptable Answers	Reject	Mark
41(c)1(v)1	100% yield = (203.3 x 0.025) /5.08(25)g) (1)		2
	yield = $(3.75 \times 100) = 74\%$ (1) 5.08	70	
	OR Mol magnesium chloride = <u>(3.75</u> 203.3) = 0.018445/0.01845/0.0184/0.018 (1.)		
	yield = (<u>100 X 0.01845)</u> 0.025		
	= 74 % (1)		
	Second mark can be given as TE if expected yield or number of moles is wrong.		
	ALLOW 73.82/73.78/73.8 /73.6 /other answers rounding to 74 % from earlier approximations /72 (from 0.018 moles)		
	Allow TE from (a) and or (c)(i) and or (c)(ii) If the ratio HCl to MgCl ₂ is 1:1 ans 37 % (2) If moles of HCl in (c)(i) are wrong (2) If (a) and (c)(i) are correct 37 % scores (1)		
	If moles MgCO ₃ = 0.05 allow TE giving 37/ 36.9% Ignore sf except 1 sf		

Question Number	Acceptable Answers	Reject	Mark
41(c)1(vi)1	Some stays in solution / losses on transferring from one container to another/ loss on filtering /crystals left behind/some left on filter paper etc Any one ALLOW correct answers with other comments which are not incorrect eg "there may be some spillage and also"	Incomplete reaction/side reaction Lost as waste products Lost to environment Lost in manipulation? Hydrolysis Weighing errors Just "spillage"	1

Question Number	Acceptable Answers	Reject	Mark
41(d)(i)1	Not 100% ionic /almost completely ionic OR (partial) covalent character/ almost no covalency OR Discrepancy in BH values indicates polarisation (of ions) (1) Mark can be given if answer here refers to bond strength and the answer above is included in (ii)	Magnesium chloride is covalent Magnesium chloride is partially ionic Just "polarity of ions"	1

Question	Acceptable Answers	Reject	Mark
Number			
41(d)(ii)1	QWC I' larger (than Cl') (1) so (ion) easier to polarise /distort (1) ALLOW for 2 nd mark increases covalent character / more covalent than MgCl ₂ / converse for MgCl ₂ / description of polarisation instead of the term If clearly ions, allow reference to iodine instead of iodide ("iodine has a larger ion") Read in conjunction with (i). Direct comparison	Size of atoms rather than ions I ₂ is larger than Cl ₂ I ₂ molecules are polarised Mg ²⁺ is polarised Iodine more electronegative than chlorine	2
Question	Acceptable Answers	Reject	Mark
Number			
41(e)1(i)1	$\frac{(100 \times 20)}{10^{6}} = 2 \times 10^{-3} (g)$ ALLOW 0.002(g) 1/500 (g) 2 x 10 ⁻⁶ kg IGNORE % as unit	2 x 10 ⁻³ = 0.0002	1

Question Number	Acceptable Answers	Reject	Mark
41(e)1(ii)1	(More) soluble (in water)/ (more) soluble in blood stream/ can be given as solution/ won't produce gas in stomach / won't react with stomach acid/ doesn't produce CO ₂ Converse answers for MgCO ₃ Or other valid answers ALLOW can be given in liquid form	MgCl ₂ is a liquid MgCO ₃ is too reactive	1