Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	$\Delta S_{\text{system}} = ((2 \times 192.3) - (2 \times 95.8) - (2 \times 3 \times 65.3))$ (1)	198	2
	= -198.8 / -199 (J mol ⁻¹ K ⁻¹) Allow – 200 (2 SF)		
	If units are not those in which data is given, must be correct. (1)		
	Note check working		
	Correct answer without working (2)		
	Correct choice of multiples and data but wrong answer scores first mark (1)		
	Correct value with wrong sign based on entropy of reactants – entropy of products (giving +199) (1)		
	TE for second mark if multiples for hydrogen, nitrogen and ammonia are missed/ incorrect, but correct data used. or multiples correct and one error in data.		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	If answer to (a) (i) is negative: Disorder decreases / order increases (as reaction goes forward) (1) Reference to order or disorder required for the mark. As number of (gas)molecules/moles/particles decreases (1) OR 4 moles of gas produces 2 moles Ignore comments on number of different types of molecule in equilibrium mixture If answer to (a) (i) is positive: Must say this is unexpected with correct reasons to score 2 marks No marks if the positive answer is expected	Just "entropy decreases"	2

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	$\Delta S_{\text{surr}} = -(-110.2 \text{ x } 1000) / 700 \text{ (1)}$ (+157.4285) $= (+) 157.4 / 157 \text{ (J mol}^{-1} \text{ K}^{-1})$ $OR (+) 0.1574 / 0.157 \text{ kJ mol}^{-1} \text{ K}^{-1} \text{ (1)}$ Ignore sf except 1 Correct answer without working (2)		2
	Correct value with negative sign (1) Use of $\Delta S_{\text{surr}} = -\Delta H/T$ but wrong answer (1)		

Question	Acceptable Answers	Reject	Mark
Number			
1	$(\Delta S_{\text{system}} = \Delta S_{\text{total}} - \Delta S_{\text{surr}})$		1
(b) (ii)	=(-78.7-157.4))		
	= -236.1/ -236 (J mol ⁻¹ K ⁻¹)		
	OR -0.2361 / -0.236 (kJ mol ⁻¹ K ⁻¹)		
	Allow -235.7 if 157 used and -238.7 if 160		
	used		
	Ignore units unless value in kJ given as J or	values in kJ added	
	vice versa	to values in J	
	TE from (b)(i)		

Question	Acceptable Answers	Reject	Mark
Number			
1	Reactants predominate / more nitrogen and	Just "Equilibrium	1
(b) (iii)	hydrogen (than ammonia)	lies to the left"	
		Just "no ammonia	
		is present".	
		The gases are	
		present in ratio	
		1:3:2	

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	$K_p = (pNH_3)^2/(pN_2)(pH_2)^3$ (1) Can be written in other formats eg p^2NH_3 etc $pH_2 = (150 - 21 - 36) = 93$ (atm) (1)	Square brackets in first mark	4
	$K_p = ((36)^2/(21)(93)^3) = (7.6724994 \text{ x} 10^{-5})$ = 7.67 x 10 ⁻⁵ (1) Ignore sf except 1	No TE for value on incorrect K _p Expression	
	atm ⁻² (1) TE for units on incorrect K_p expression Correct answer including units without quoting K_p expression scores 3	Units other than atm	

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	(Yield of ammonia is increased) because there are fewer moles / molecules (of gas) on the right	Just 'equilibrium moves right'	1
	OR		
	System tries to reduce the pressure by going to the side with fewer moles/ molecules (of gas)		
	Ignore comments about value of K_p changing Ignore comments about more collisions occurring/more molecules having energy greater than or equal to activation energy		

Question Number	Acceptable Answers	Reject	Mark
*1 (c)(iii)	First mark At higher temperature ΔS_{surr} is less positive/decrease/more negative (1)		4
	Second mark making ΔS_{total} more negative / less positive/decreases		
	No TE for 2^{nd} mark if ΔS_{surr} is said to increase. (1)		
	Third mark (so) K_p decreases (1) Third mark depends on second mark being correct/neutral answer		
	Fourth mark so equilibrium position further left /in endothermic direction/ in reverse direction		
	OR		
	lower yield of ammonia / reaction is less feasible (1) Fourth mark is a stand alone mark		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(iv)	Rate (of reaching equilibrium) is higher / faster		1
	Ignore comments about increasing numbers of successful collisions at higher temperature		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	$\Delta S_{\text{system}}^{e}$ = 109.2 + (6x 69.9) - 343 (1) =(+)185.6(J mol ⁻¹ K ⁻¹) / (+)186 (J mol ⁻¹ K ⁻¹) (1) OR (+)0.186 (kJ mol ⁻¹ K ⁻¹) (2) IGNORE units even if incorrect correct answer with no working scores 2 Value using 1 for H ₂ O = -163.9 scores 1 Use of value for H ₂ O(g) (188.7) gives 898.4 (J mol ⁻¹ K ⁻¹) (1)	185	2
	correct value with incorrect sign scores 1		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	Yes as (solid and) liquid forms (from solid) / number of moles increases $ \begin{tabular}{l} OR \\ If $\Delta \mathcal{S}^{\rm e}_{\rm system}$ in (i) is negative the sign is not as expected as liquid forms from solid / number of moles increases \\ \end{tabular} $	Disorder increases, with no ref to liquid or number of moles	1

Question Number	Acceptable Answers	Reject	Mark
	First mark		
2 (a)(iii)	$\Delta S^{9}_{surroundings} = -88.1 \times (1000)$ (1)		2
	Second mark		
	= -295.6375		
	$= -295.6 \text{ J mol}^{-1} \text{ K}^{-1}$ (1)		
	correct units must be shown but order not		
	important		
	OR		
	-0.2956 kJ mol ⁻¹ K ⁻¹ (1) correct units must be shown but order not important		
	correct answer with or without working and correct units scores (2) ignore sf except 1		
	correct value with positive sign scores 1		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	(185.6-295.6) = -110 (J mol ⁻¹ K ⁻¹)	Answers where values in J are added to kJ	1
	OR		
	-0.110 (kJ mol ⁻¹ K ⁻¹)		
	could use 186 or 296 etc		
	TE from (a)(i) and (iii)		
	(+)602.8 (J mol ⁻¹ K ⁻¹) if value for $6H_2O(g)$ was used in (a) (i)		
	-459.5 (J mol $^{-1}$ K $^{-1}$) if value for one H $_2$ O was used in (a) (i)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(v)	Decomposition (at 298 K) will not occur as ΔS^{e}_{total} is negative / Reactions are only spontaneous if total entropy change is positive / decomposition not thermodynamically feasible / (hydrated cobalt chloride) is thermodynamically stable TE if answer to (a)(iv) is positive showing decomposition (at 298 K) may occur OR Positive total entropy change doesn't indicate rate of reaction		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	First mark Thermometer (1) Second mark (dependent on first) depends on choosing thermometer as temperature change is small / (%) error in balance smaller than for temperature reading (%) error in pipette smaller than for temperature reading (can be shown by calculation) / as scale with greater degree of precision needed / scale with more graduations needed (1) IGNORE any references to 'accurate thermometer'		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Use more cobalt chloride / less water (1) To increase temperature rise (1) Mark independently	Just 'use more reactants' Use more cobalt chloride and more water repeat expt add a lid or extra insulation to beaker use distilled water	2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i) QWC	Radius (of cation) increases (down group) OR any two values of radius: Mg ²⁺ = 0.072, Ca ²⁺ = 0.100 / Sr ²⁺ = 0.113 (nm) data may be shown beside the table (1)	Atomic radii unless ionic radii also given	4
	Radius Co ²⁺ = 0.065 nm OR Co ²⁺ radius smaller than other ions (1) Data on EITHER Co ²⁺ OR data showing increase in radius down Group II required for BOTH of first two marks	Radius of cobalt chloride	
	Force of attraction between ions decreases (as radius of ions increases) / charge density of ions decreases / negative ion can come closer to nucleus of positive ion (1) ALLOW "weaker ionic bonds"	Polarising power decreases	
	Predict lattice energy -2550 to -2900 (kJ mol ⁻¹) (1) IGNORE sign		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii) QWC	First mark Reference to enthalpy of hydration (may be in equation $\Delta H_{\text{solution}} = -\text{LE} + \Delta H_{\text{hydration}}$) (1) Second mark Solubility depends on relative size of lattice energy and enthalpy of hydration (1) Third mark EITHER Solubility more likely if $\Delta H_{\text{solution}}$ is negative OR (If $\Delta H_{\text{solution}}$ is positive,) may / will dissolve if ΔS_{total} is positive ACCEPT solvation instead of hydration		3

Question Number	Acceptable Answers	Reject	Mark
2 (d) QWC	First mark Third ionization energy high(er) for Mg / Mg = 7733 kJ mol ⁻¹ , (third ionization energy for Co = 3232 kJ mol ⁻¹) (1)		2
	Second mark (Third ionization energy for Mg is high) because the electron is being removed from an inner shell / full shell / 2p level / 2p orbital (1)		
	OR		
	Not compensated by higher lattice energy for Mg^{3+} (and so $\Delta H_{\text{formation}}$ of $MgCl_3$ would be highly endothermic) (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)	(It has) three (moles of) COOH groups / three (moles of) carboxylic acid groups / three (moles of) protons /three (moles of) H ⁺ /it is tribasic / three acid groups/ three (moles of) replaceable hydrogens/triprotic ALLOW Three acid groups	'carbonyl'/'carboxylate'	1

Question	Acceptable Answers	Reject	Mark
Number			
3(b)(i)	FIRST, CHECK THE FINAL ANSWER IF answer = $+546$ (J mol ⁻¹ K ⁻¹) award 2 marks "546" (J mol ⁻¹ K ⁻¹) scores (1) as sign omitted) ($\Delta S^{\circ}_{system} =)[200.5 + (3 \times 213.6) + (3 \times 69.9)]$ - $99.9 + (3 \times 101.7)]$ (1) = $[+1051] - [+505]$ = $+546$ (J mol ⁻¹ K ⁻¹) Allow + 0.546 kJ mol ⁻¹ K ⁻¹ 2nd mark is CQ on entropy values used for example EITHER Omission of factor of x3 for some or all substances in the equation OR The use of one incorrect entropy value(s) from the data book OR One missing value Note If two or more of the above three errors are made together, (0) awarded. IGNORE sf except 1 sf	Incorrect units (no 2nd mark)	2
	awarded.		
	IGNORE sf except 1 sf		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark Gas formed (from solid) OR Liquid formed (from solid) OR Gas and liquid formed (from solid) (1)		2
	Second mark EITHER More moles of product than reactants / more moles formed OR 4 mol (of reactants) to 7 mol (of products) OR 4 'molecules' to 7 'molecules' NOTE: If specific numbers are stated, these must be correct (ie 4→7) OR Increase in disorder / increase in ways of arranging particles (1) IGNORE 'entropy increases' NOTE: Both points may be made in the same sentence	Just 'more product' / 'more particles formed' 2 substances going to 3 substances	

Question	Accontable Answers	Poject	Mark
	Acceptable Answers	Reject	IVIALK
Number			
3 (b)(iii)	$(\Delta S^{\theta}_{\text{surroundings}} =) \frac{-\Delta H}{T} \text{ OR } \frac{-70000}{298}$ $= -234.8993289$ $= -235 \text{ J mol}^{-1} \text{ K}^{-1}$ (1) OR $(\Delta S^{\theta}_{\text{surroundings}} =) \frac{-\Delta H}{T} \text{ OR } \frac{-70}{298}$	Incorrect rounding (e.g234 / -234.89) no 2nd mark	2
	(1)		
	= - 0.235 kJ mol ⁻¹ K ⁻¹ (1)		
	IGNORE sf except 1 sf NOTE: Correct units are required for the award of the second mark +235 with units scores (1)	+235 with no units (0) overall	

Question Number	Acceptable Answers	Reject	Mark
3 (b)(iv)	$(\Delta S_{\text{total}}^{\theta} = \Delta S_{\text{system}}^{\theta} + \Delta S_{\text{surroundings}}^{\theta})$ $= (+546) + (-235)$ $= (+)311 \text{ (J mol}^{-1} \text{ K}^{-1})$ $OR = (+)0.311 \text{ kJ mol}^{-1} \text{ K}^{-1}$ $CQ \text{ on (i) and (iii)}$ $IGNORE \text{ sf except 1 sf}$	Incorrect units	1

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	Positive so feasible / spontaneous / will occur / reaction goes / reacts (at 298 K) NOTE: LOOK BACK at answer to (b)(iv) IF answer to (b)(iv) has a positive sign (the + sign can be stated or implied) THEN ALLOW JUST feasible / spontaneous / will occur / reaction goes / reacts (at 298 K) Mark CQ on sign of answer to (iv)		1
	Mark CQ on sign of answer to (IV)		

Question Number	Acceptable Answers	Reject	Mark
4 (a)(i)	(+)186.2 (J mol ⁻¹ K ⁻¹)		1

Question Number	Acceptable Answers		Reject	Mark
4(a)(ii)	(266.9 + 186.2) - 310.1	(1)		2
	= + 143 (J mol ⁻¹ K ⁻¹)	(1)		
	- 143 scores (1)			
	Correct answer with sign and no working scores marks	(2)		
	ALLOW TE from (i)			

Question Number	Acceptable Answers	Reject	Mark
4(a)(iii)	Yes, as reaction produces 2 molecules/moles from one/more molecules/moles (1		2
	(and) all products are gases IGNORE references to volumes	1)	
	More moles/molecules of gas produced scores (2	2)	
	OR		
	Yes, (as the reaction is endothermic) $\Delta S_{surroundings}$ inegative	s 1)	
	Since the reaction takes place/goes (spontaneously) ΔS_{total} is positive and therefore ΔS_{system} is positive (1	1)	
	ALLOW TE from (a)(ii) i.e. 'No, as'		

Question Number	Acceptable Answers		Reject	Mark
4(a)(iv)	$\Delta S_{surr} = -\Delta H/T$ (1 = -71900/700 = -102.7 J K ⁻¹ mol ⁻¹ /- 0.1027 kJ K ⁻¹ mol ⁻¹ (1	1) 1)	1 or 2 sf	3
	Correct answer and sign with no working scores (2)		
	-0.103 J K ⁻¹ mol ⁻¹ scores (1)			
	Third mark So ΔS_{total} is positive (so reaction is feasible) (:	1)		
	OR $\Delta S_{\text{total}} = +40.3 \text{ J K}^{-1} \text{ mol}^{-1} \text{ (so reaction is feasible)}$	1)		
	ALLOW TE from (a)(ii)	,		

Ougstion	Accentable Anguara		Dojost	Mode
Question Number	Acceptable Answers		Reject	Mark
4(a)(v)	$\Delta S_{\text{total}} = 0$			3
(4)(1)	OR			
		(1)		
	$T = \Delta H \div \Delta S_{\text{surroundings}}$ OR			
	1 - 1 -	(1)		
	= 502.8 (K)	(1)		
	IGNORE sf except 1sf Correct answer with no working scores (3)			
	ALLOW 0.5028 (K) for (2) marks			
	ALLOW — 502.8 (K) for (2) marks			
	ALLOW — 0.5028 (K) for (1) mark			
	ALLOW TE from (a)(ii)			
	If the calculation is not based on $\Delta S_{total} = 0$ then maximum of (2) marks can be awarded if done correctly	a		

Question Number	Acceptable Answers		Reject	Mark
4(b)	The catalyst is in a different state/phase to the reactants IGNORE references to products	(1)		3
	Any two from It provides an alternative (reaction) route/mechanism/gases adsorbed on catalyst s	urface (1)		
	Of lower activation energy/weakens bonds in reactants	(1)		
	Greater proportion of molecules have E ≥ Ea	(1)		