Questi	ons
--------	-----

<i>i</i> 1	

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

This question is about acids and bases.

Bromothymol blue, methyl orange and phenolphthalein are indicators used in titrations.

Which, if any, of these indicators could be used for a titration of ammonia, $NH_3(aq)$, with ethanoic acid, $CH_3COOH(aq)$?

A bromothymol blue
B methyl orange
C phenolphthalein
D none of these three indicators

(Total for question = 1 mark)

Q2.

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

This is a question about buffer solutions.

A buffer solution always

A keeps the pH less than 7.

B contains equimolar amounts of acid and its conjugate base.

C keeps the pH constant if small quantities of acid or base are added.

D resists changes in pH if small quantities of acid or base are added.

\sim	2
u	J.

Answer the question with a cross in the box you think is correct ⊠. If you change	
your mind about an answer, put a line through the box 🔀 and then mark your new	N
answer with a cross ⊠.	

This question is about acids and bases.

Which of these mixture:	s would form a	a buffer solution	with a ph	d below 7?
-------------------------	----------------	-------------------	-----------	-------------------

(1)

- ☑ A NaOH(aq) and excess HCl(aq)
- B NaOH(aq) and excess CH₃COOH(aq)
- C excess NaOH(aq) and HCl(aq)
- D excess NaOH(aq) and CH₃COOH(aq)

(Total for question = 1 mark)

Q4.

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

This question is about acids and bases.

What is the order of **decreasing** pH for 0.100 mol dm⁻³ solutions of these three acids?

(1)

- □ A CH₃COOH > CH₂CICOOH > HCI
- B HCI > CH₃COOH > CH₂CICOOH
- □ C CH₂CICOOH > CH₃COOH > HCI
- D HCI > CH₂CICOOH > CH₃COOH

(1)

Q5.

This question is about acids and bases.

The pH of two salt solutions, **J** and **K**, are

solution \mathbf{J} pH = 5 solution \mathbf{K} pH = 9

The solutions are equimolar.

Which acids and bases could form the salts in solutions **J** and **K**?

Acid and base forming the salt Acid and base forming the salt in solution J in solution K A HCl(aq) and NH₃(aq) CH₃COOH(aq) and NaOH(aq) X В HCl(aq) and NaOH(aq) CH₃COOH(aq) and NH₃(aq) X C CH₃COOH(aq) and NaOH(aq) HCl(aq) and NaOH(aq) 1 D CH₃COOH(aq) and NH₃(aq) HCl(aq) and NH₃(aq)

(Total for question = 1 mark)

Q6.

Boric acid, H₃BO₃, is a weak acid with antiseptic properties.

Boric acid can undergo further dissociation.

Which is the conjugate acid of the HBO3 ion?

(1)

□ A BO₃³

☑ B H₂BO₃

C H₃BO₃

☑ D H₃O⁺

Q7.

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

This question is about acids and buffer solutions.

The reaction of ammonia with water can be represented by

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

Which is the acid-conjugate base pair?

(1)

	Acid	Conjugate base
□ A	NH_3	OH-
■ B	NH ₃	NH ₄
□ C	H ₂ O	OH-
□ D	H ₂ O	NH ₄

Q8.

The reaction of sulfuric acid with potassium hydroxide is a neutralisation. The equation for this reaction is

$$H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

A titration was carried out using the following method.

- Potassium hydroxide solution of unknown concentration was placed in a burette and the initial reading was recorded.
- 25.0 cm³ of sulfuric acid solution, concentration 0.0800 mol dm⁻³, was transferred to a conical flask.
- Three drops of phenolphthalein indicator were added to the sulfuric acid.
- Potassium hydroxide was added from the burette until the solution just changed colour and then the burette reading was recorded.
- Repeat titrations were carried out until concordant titres were obtained.

What is the	colour of the	solution v	vhen neutra	alisation has	just occurred?
vviiat is tile	COICGI OI LIIC	JOIGHOIT V	viicii iicatic		Just occurred:

A B C D	colourless orange pale pink red			1)
			(Total for question = 1 mar	k)

Q9.

Hydrochloric acid is prepared by dissolving hydrogen chloride gas in water. It is difficult to dissolve a known amount of hydrogen chloride, so the exact concentration of such solutions is uncertain. A solution of hydrochloric acid of concentration between 0.095 mol dm⁻³ and 0.105 mol dm⁻³ was prepared.

Before a class attempted a practical using this solution, a technician standardised the hydrochloric acid with sodium carbonate solution. The technician dissolved 1.30 g of anhydrous sodium carbonate in water and made up the solution to 100 cm³.

The equation for the reaction which occurs is shown.

$$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$$

A 10.0 cm³ portion of the sodium carbonate solution was transferred to a conical flask. Three drops of methyl orange indicator were added and the solution titrated with hydrochloric acid. The results for the experiment are shown.

Titration	1	2	3	4	5
Final burette reading / cm ³	26.00	34.00	36.10	24.15	48.20
Initial burette reading / cm ³	0.00	10.00	11.00	0.05	24.15
Titre / cm³					
Concordant results (✓)					

The colour change at the end-point when methyl orange is used as an indicator for this titration is from

A orange to yellow
B red to orange
C yellow to orange
D yellow to red

Q10.

The reaction of sulfuric acid with potassium hydroxide is a neutralisation. The equation for this reaction is

$$H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

A titration was carried out using the following method.

- Potassium hydroxide solution of unknown concentration was placed in a burette and the initial reading was recorded.
- 25.0 cm³ of sulfuric acid solution, concentration 0.0800 mol dm⁻³, was transferred to a conical flask.
- Three drops of phenolphthalein indicator were added to the sulfuric acid.
- Potassium hydroxide was added from the burette until the solution just changed colour and then the burette reading was recorded.
- Repeat titrations were carried out until concordant titres were obtained.

Select the most appropriate piece of apparatus to measure the 25.0 cm³ of sulfuric acid.

A B C D	burette measuring cylinder pipette volumetric flask	(1)
		(Total for question = 1 mark)

Mark Scheme

Q1.

Question Number	Answer	Mark
	The only correct answer is D (none of these three indicators)	(1)
	$m{A}$ is incorrect because both acid and base are weak so pH range at equivalence is too narrow for bromothymol blue to change colour	
	B is incorrect because both acid and base are weak so pH range at equivalence is too narrow for methyl orange to change colour	
	${m C}$ is incorrect because both acid and base are weak so pH range at equivalence is too narrow for phenolphthalein to change colour	-:

Q2.

Question Number		Answer	Mark
	The adde	only correct answer is D (resists changes in pH if small quantities of acid or base are ed)	(1)
	А	is not correct because buffer solutions can be alkaline or acidic	
	В	is not correct because buffers do not always contain equal numbers of moles of the acid and its conjugate base	
	С	is not correct because a buffer does not prevent any change in pH	

Q3.

Question Number	Answer	Mark
	The only correct answer is B (NaOH(aq) and excess CH ₃ COOH(aq))	(1)
	$m{A}$ is incorrect because the solutions would not form a buffer	
	$oldsymbol{C}$ is incorrect because the solutions would not form a buffer	
	D is incorrect because the solutions would not form a buffer	

Q4.

Question Number	Answer	Mark
	The only correct answer is A (CH ₃ COOH > CH ₂ ClCOOH > HCl)	(1)
	\underline{B} is incorrect because HCl is the only strong acid, so would have the lowest pH \underline{C} is incorrect because CH ₂ ClCOOH is stronger than CH ₃ COOH as the Cl atom stabilises the anion	
	\underline{D} is incorrect because the stronger the acid the lower the pH, hence these are in reverse order	

Q5.

Question number	Answer	Mark
The only correct answer is A (solution J: HCl(aq) and NH ₃ (aq solution K: CH ₃ COOH(aq) and NaOH(aq))	The only correct answer is A (solution J: HCl(aq) and NH₃(aq), solution K: CH₃COOH(aq) and NaOH(aq))	(1)
	B is incorrect because the salt formed from a strong acid (HCl) and a strong base (NaOH) will have pH 7 while that formed from a weak acid (CH ₃ COOH) and a weak base (NH ₃) will have pH close to 7	
	C is incorrect because the salt formed from a weak acid and a strong base will have a pH of about 9 while that formed from a strong acid and a strong base will have pH 7	
	D is incorrect because the salt formed from a weak acid and a weak base will have a pH of about 7 while that formed from a strong acid and a weak base will have pH of about 5	

Q6.

Answer	Mark
The only correct answer is B	(1)
A is not correct because it is the conjugate base not acid	
c is not correct because it is not the conjugate acid	
D is not correct because it is not the conjugate acid	
	The only correct answer is B A is not correct because it is the conjugate base not acid C is not correct because it is not the conjugate acid

Q7.

Question Number	Answer	Mark
	The only correct answer is C (H ₂ O and OH ⁻)	(1)
	A is not correct because ammonia is acting as a base and not an acid	
	B is not correct because this is the base – conjugate acid pair	
	D is not correct because water and the ammonium ion are not an acid- conjugate base pair	

Q8.

Question Number	Acceptable Answer	Mark
	The only correct answer is C	(1)
	A is not correct because this is the appearance of the solution before the potassium hydroxide is added	
	B is not correct because this is the colour that methyl orange would be in neutral solution	
	D is not correct because this is a colour sometimes given for the end-point which is incorrect, and it is the colour of phenolphthalein in acidic solution	

Q9.

Question Number	Answer	Mark
	The only correct answer is C	(1)
	A is not correct because this is the reverse of the correct colour change	
	B is not correct because this is doing the reverse titration (acid in flask and carbonate in burette)	
	D is not correct because this is going beyond the endpoint to an acidic solution	

Q10.

Question Number	Acceptable Answer	Mark
3	The only correct answer is C	(1)
	A is not correct because a burette is used to measure varied volumes	
	$m{\textit{B}}$ is not correct because a measuring cylinder is less precise	
	D is not correct because a volumetric flask is less precise	