1 The dihydrogenphosphate-hydrogenphosphate ion system is an important buffer in the human body.

$$H_2PO_4^-$$
 + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+

(a) In this system, there are two acid-base conjugate pairs. These are

		acid with its conjugate base	base with its conjugate acid
X	Α	$H_2PO_4^-$ / HPO_4^{2-}	H_2O / H_3O^+
\mathbf{X}	В	H_2O / H_3O^+	$HPO_{4}^{2-} / H_{2}PO_{4}^{-}$
\mathbf{X}	С	$H_{3}O^{+} / H_{2}O$	₂ PO ₄ ⁻ / HPO ₄ ²⁻
X	D	$H_2PO_4^-$ / HPO_4^{2-}	$H_{3}O^{+} / H_{2}O$

(b) A formula that can be used for the calculation of the pH of this buffer solution is

$$pH = pK_a + log\left(\frac{\left[HPO_4^{2-}\right]}{\left[H_2PO_4^{-}\right]}\right)$$

Calculate the pH of this buffer using

$$pK_a = 7.20$$
 [HPO₄²⁻] = 3.98 × 10⁻⁸ mol dm⁻³ [H₂PO₄] = 3.89 × 10⁻⁷ mol dm⁻³
(1)
A 6.19
B 6.21
C 7.20

(Total for Question = 2 marks)

- 2 Calculate the pH of a solution of HCl, of concentration 0.25 mol dm⁻³.
 - **A** -0.60

D 8.19

- **B** 0.25
- **C** 0.60
- **D** 1.39

(Total for Question = 1 mark)

PhysicsAndMathsTutor.com

- **3** Select the correct pH for each of the following solutions.
 - (a) 2 mol dm⁻³ nitric acid.
 A -2
 B -0.3
 C +0.3
 D +2
 - (b) 0.10 mol dm⁻³ barium hydroxide, Ba(OH)₂. $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$.
 - ▲ 13.0
 - **B** 13.3
 - 🖸 **C** 13.7
 - **D** 14.3
 - (c) A mixture of 20 cm³ of 1.0 mol dm⁻³ hydrochloric acid and 10 cm³ of 1.0 mol dm⁻³ sodium hydroxide.
 - 🖾 **A** 0
 - **B** 0.30
 - **C** 0.48
 - D 7

(Total for Question = 3 marks)

- 4 Ammonia reacts with water in a reversible reaction. Which are the Brønsted-Lowry bases?
 - \blacksquare **A** H₂O and OH⁻
 - \blacksquare **B** NH, and OH⁻
 - \square **C** NH₄⁺ and H₂O
 - \square **D** NH_4^+ and NH_3^-

(Total for Question = 1 mark)

(1)

(1)

- **5** Suggest the most likely pH for each of the following solutions.
 - (a) 5.0 mol dm⁻³ hydrochloric acid.
 - (1) A +5 **B** +0.7 **C** −0.7 **D** −5 (b) 0. mol dm⁻³ strontium hydroxide, Sr(OH), $K_{\rm w} = 1.0 \times 10^{-14} \, {\rm mol^2} \, {\rm dm^{-6}}$ (1) A 13.3 **■ B** 13.6 **C** 14.0 **D** 14.3 (c) A mixture of 20 cm³ of 1.0 mol dm⁻³ nitric acid and 10 cm³ of 1.0 mol dm⁻³ sodium hydroxide. (1) A 0 **B** 0.30
 - **D** 7

C 0.48

(Total for Question = 3 marks)

6 In liquid ammonia the following equilibrium is present.

$$NH_2^- + NH_4^+ \rightleftharpoons 2NH_3$$

Identify the Brønsted-Lowry base(s).

- \square **A** NH⁻₂ only
- \square **B** NH⁺₄ only
- \square **C** NH⁻₂ and NH₃
- \square **D** NH⁺₄ and NH⁻₃

- 7 A solution of potassium manganate(VII) was used to determine the concentration of iron(II) ions in solution by titration in the presence of excess dilute sulfuric acid.
 - (a) With the potassium manganate(VII) in the burette, the end-point of the reaction is when the solution in the conical flask turns
 - A colourless.
 - **B** pink.
 - C green.
 - **D** orange.
 - (b) If insufficient acid is added, the titre value is
 - A low and a brown precipitate forms.
 - **B** low and a green precipitate forms.
 - **C** high and a brown precipitate forms.
 - **D** high and a green precipitate forms.

8 Separate 0.1 mol dm⁻³ aqueous solutions of ammonia, methylamine and phenylamine were prepared. Which of the following sequences shows the solutions in order of **increasing** pH?

- **A** phenylamine, methylamine, ammonia
- **B** phenylamine, ammonia, methylamine
- C methylamine, ammonia, phenylamine
- **D** methylamine, phenylamine, ammonia

(Total for Question = 1 mark)

(1)

- **9** The dissociation constant of water, $K_{w'}$ increases with increasing temperature. When the temperature increases, water
 - A remains neutral.
 - **B** dissociates less.
 - C becomes acidic.
 - **D** becomes alkaline.

10 The reaction between concentrated sulfuric acid and pure ethanoic acid is

 $CH_{3}COOH + H_{2}SO_{4} \rightleftharpoons CH_{3}COOH_{2}^{+} + HSO_{4}^{-}$

The Brønsted-Lowry acids in this equilibrium are

- \square **A** CH₃COOH and H₂SO₄
- \blacksquare **B** CH₃COOH₂⁺ and HSO₄⁻
- \square **C** H₂SO₄ and CH₃COOH₂⁺
- \square **D** CH₃COOH and HSO₄⁻

(Total for Question = 1 mark)

- **11** An aqueous solution of ethanoic acid is gradually diluted. Which of the following statements is **incorrect**?
 - **A** The pH decreases.
 - \square **B** The value of K_{a} is unchanged.
 - **C** The concentration of ethanoic acid molecules decreases.
 - **D** The proportion of ethanoic acid molecules which dissociates increases.

- **12** Methyl orange and phenolphthalein are both acid-base indicators. In the titration of a strong acid against a weak alkali
 - A methyl orange is a suitable indicator but phenolphthalein is not.
 - **B** phenolphthalein is a suitable indicator but methyl orange is not.
 - **C** both phenolphthalein and methyl orange are suitable indicators.
 - **D** neither phenolphthalein nor methyl orange is a suitable indicator.

- **13** Which of the following statements is true about **all** substances that form acidic solutions in water?
 - A They are corrosive.
 - **B** They are liquids.
 - **C** They contain hydrogen atoms.
 - **D** They form $H^+(aq)$ ions.

- **14** Select the correct pH for each of the following solutions.
 - (a) Nitric acid, HNO_3 , of concentration 2 mol dm⁻³, assuming it is fully dissociated.
 - **A** -0.3
 - **■ B** 0.0
 - **C** 0.3
 - **D** 2.0
 - (b) Sodium hydroxide, NaOH, of concentration 2 mol dm⁻³, using $K_{\rm w} = 1.0 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}$
 - **▲** −13.7
 - **B** 13.7
 - **C** 14.0
 - **D** 14.3 **D** ■
 - (c) Ethanoic acid, CH_3COOH , of concentration 2 mol dm⁻³, making the usual assumptions.

$$K_{a} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = 1.7 \times 10^{-5} \text{ mol dm}^{-3}$$
(1)

A 2.2

B 2.4

C 4.5

D 4.8

(d) The mixture formed when 25 cm³ of 2 mol dm⁻³ sodium hydroxide solution is added to 50 cm³ of 2 mol dm⁻³ ethanoic acid, for which $K_{a} = 1.7 \times 10^{-5} \text{ mol dm}^{-3}$.

A 2.2

B 2.5

C 4.5

(1)

D 4.8

(1)

- 15 In which of these reactions is the hydrogensulfate ion, HSO₄⁻, behaving as a Brønsted-Lowry base?
 - \square A $HSO_4^- + H_3O^+ \rightarrow H_2SO_4 + H_2O$

 - $\label{eq:constraint} \blacksquare \ \ \mathbf{C} \quad \mathrm{HSO_4^-} + \mathrm{H_2O} \rightarrow \mathrm{SO_4^{2-}} + \mathrm{H_3O^+}$
 - \square **D** HSO₄⁻ + CO₃²⁻ \rightarrow SO₄²⁻ + HCO₃⁻

- **16** A solution of hydrochloric acid has pH 3.0. When it is made 10 times more dilute, the pH is
 - A 0.3

 - \Box C 4.0
 - **D** 13.0

(Total for Question 1 mark)

- 17 In which reaction is water acting as a Brønsted-Lowry acid?
 - \square A H₂O + HCl \rightarrow H₃O⁺ + Cl⁻
 - $\square \mathbf{B} \quad H_2O + SO_3 \rightarrow H_2SO_4$
 - $\square C \quad H_2O + NH_3 \rightarrow NH_4^+ + OH^-$
 - $\square \mathbf{D} \quad \mathrm{H}_{2}\mathrm{O} + \mathrm{CO}_{2} \rightarrow \mathrm{H}_{2}\mathrm{CO}_{3}$

18 Which of the following solutions has the lowest pH?

- \square **A** 0.010 mol dm⁻³ hydrochloric acid.
- \blacksquare **B** 0.100 mol dm⁻³ hydrochloric acid.
- \square C 0.010 mol dm⁻³ ethanoic acid.
- \square **D** 0.100 mol dm⁻³ ethanoic acid.

(Total for Question = 1 mark)

19 An aqueous solution of ammonium chloride, NH₄Cl, has a pH of less than 7 because

- A the ammonium ions donate protons to water molecules giving rise to oxonium ions, $H_3O^+(aq)$.
- **B** the chloride ions combine with hydrogen ions from water to form hydrochloric acid, HCl(aq).
- C an aqueous solution of ammonium chloride is unstable and evolves ammonia gas, NH₃(g), leaving dilute hydrochloric acid.
- **D** the ammonium chloride reacts with carbon dioxide from the atmosphere giving ammonium carbonate, $(NH_4)_2CO_3(aq)$, and hydrochloric acid, HCl(aq).

(Total for Question = 1 mark)

20 Which one of the following indicators is most suitable for titrating ethanoic acid with 0.1 mol dm⁻³ sodium hydroxide?

(Refer to page 19 of your data booklet.)

- A Thymol blue (acid)
- **B** Bromothymol blue
- C Thymol blue (base)
- D Alizarin yellow R

- **21** What is the conjugate base of the acid, $HCO_{3}^{-?}$?
 - \square **A** H₂CO₃
 - **B** CO₃^{2−}
 - ☑ C OH⁻
 - \square **D** CO_2

- 22 The pH of a 1.5 mol dm ³ solution of hydrochloric acid, HCl(aq), is
 - $\square \mathbf{A} \quad 1.50$ $\square \mathbf{B} \quad 0.18$
 - **C** 0.18
 - **D** 1.50

(Total for Question 1 mark)

- 23 Which sequence shows the bases in order of decreasing strength?
 - $\label{eq:constraint} \blacksquare \ \mathbf{A} \quad C_6H_5NH_2 \ > \ CH_3NH_2 \ > \ NH_3$
 - \square **B** NH₃ > CH₃NH₂ > C₆H₅NH₂
 - \square C $CH_3NH_2 > NH_3 > C_6H_5NH_2$
 - $\square D \quad NH_3 > C_6H_5NH_2 > CH_3NH_2$

24 Which of the following is not a reaction of a Brønsted-Lowry acid and base?

 \square A CH₃Cl + OH \rightarrow CH₃OH + Cl

- $\square \mathbf{B} \quad \mathrm{NH}_3 + \mathrm{HCl} \quad \rightarrow \mathrm{NH}_4^+ + \mathrm{Cl}$
- $\square C H_2O + HSO_4 \rightarrow H_2SO_4 + OH$
- \square **D** HCO₃ + H₂O \rightarrow CO₃² + H₃O⁺

(Total for Question 1 mark)

25 Information about four samples of acid is shown below.

Sample 1: 1.0 mol dm ³ HCl

Sample 2: 1.0 mol dm 3 H₂SO₄

Sample 3: 0.1 mol dm ³ HCl

Sample 4: 0.1 mol dm ³ CH₃COOH

Which of the following lists shows the samples in order of increasing pH?

- **▲** 1, 2, 3, 4
- **C** 2, 1, 3, 4
- **D** 4, 3, 1, 2

(Total for Question 1 mark)

26 In which of the following reactions is nitric acid acting as a base?

- $\square A HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$ $\square B HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$
- \square C HNO₃ + H₂SO₄ \rightarrow H₂NO₃⁺ + HSO₄⁻
- \square **D** HNO₃ + NaHCO₃ \rightarrow NaNO₃ + H₂O + CO₂

27 The dissociation of ethanoic acid in aqueous solution is represented by

$$CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

Which of the following statements is true for this equilibrium?

- \square A CH₃COOH is an acid and its conjugate base is CH₃COO⁻.
- \square **B** H₂O is an acid and its conjugate base is OH⁻.
- C At equilibrium, the concentrations of each substance are the same.
- **D** At equilibrium, the reaction from left to right and the reaction from right to left have stopped.

(Total for Question = 1 mark)

- 28 Why are aqueous solutions of sodium ethanoate slightly alkaline?
 - A The sodium ions react with water to give an alkali.
 - **B** The ethanoate ions react with water to give hydroxide ions.
 - C All sodium salts give alkaline solutions.
 - **D** The sodium ethanoate is fully ionized in solution.

(Total for Question = 1 mark)

- **29** A solution of a weak acid cannot be titrated with a weak base using an indicator to find the end-point because
 - A the pH change is too gradual close to the equivalence point.
 - \square **B** there are too few H⁺ ions to affect the indicator.
 - \square C there are too few OH⁻ ions to affect the indicator.
 - **D** the pH change occurs outside the range of any indicator.

- 30 At 100 °C, pure water has a pH of 6, whereas at 25 °C it has a pH of 7. This is because
 - A the dissociation of water is endothermic, so the concentration of hydrogen ions is lower at 100 °C than it is at 25 °C.
 - **B** the dissociation of water is exothermic, so the concentration of hydrogen ions is lower at 100 °C than it is at 25 °C.
 - \square C the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at 100 °C than it is at 25 °C.
 - **D** at 100 °C, water has a higher concentration of hydrogen ions than of hydroxide ions.