Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Moles N = $\frac{14.42}{14}$ = 1.03 Moles H = 3.09 Moles S= $\frac{33.06}{32.1}$ = 1.03 (1) $\frac{32.1}{32}$ Moles O = $\frac{49.43}{16}$ = 3.09 (1) (Ratio 1:3:1:3) IGNORE sf/rounding for moles NH ₃ SO ₃ any order (1) Correct answer, no working (3) If O omitted, giving NH ₃ S (2)		3

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	NH ₃ SO ₃ (any order) since molar mass = empirical formula mass/ since empirical formula mass =97/ with some other justification TE from (i) N ₂ H ₆ S ₂ , as empirical formula mass =49, approx half molecular mass		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Look for workable method. Don't penalise lack of labels on simple equipment eg test tubes. Workable way of making and collecting gas eg flask or tube + connection/ below inverted funnel with tube of water above Labelling of reactants not needed (1) Suitable (labelled) apparatus for measuring		2
	volume eg Gas syringe/ inverted burette or measuring cylinder containing water (1)	Uncalibrated tubes	

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$(\underline{66}) = 2.75 \times 10^{-3} / 0.00275 / 0.0028$ 24 000	0.003	1

Question	Acceptable Answers	Reject	Mark
Number			
1(b)(iii)	1 mol sulfamic acid \rightarrow 0.5 mol H ₂ OR ratio sulfamic acid: hydrogen gas = 2:1 OR 5.5 (x 10 ⁻³)(moles) = (2 x 2.75 (x 10 ⁻³)) (moles) OR TE using ratio calculated from (ii) (1) Each H ₂ comes from 2 H ⁺ (So 1 sulfamic acid \rightarrow 1 H ⁺) (1)	ratio sulfamic acid : hydrogen ions = 2:1	2

Question Number	Acceptable Answers	Reject	Mark
1c)(i)	$2H^{+} + CO_3^{2-} \rightarrow H_2O + CO_2$		1
	ALLOW $H^{+} + CO_{3}^{2-} \rightarrow HCO_{3}^{-}$		
	$2H^+ + CO_3^{2-} \rightarrow H_2CO_3$		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Less easy to spill solid (in storage) OR doesn't spread if spilt OR easy to sweep up if spilt OR less corrosive/ less strongly acidic than HCl	Just "it is a solid" Less reactive (unless with comment on acid strength) HCl produces poisonous gas / Cl ₂ Less concentrated	1
	ALLOW Weaker (acid) / HCl is a stronger acid	Has higher pH Just "HCl is harmful/irritant/corrosive" Just "sulfamic acid is not harmful/irritant/corrosive"	

Question Number	Acceptable Answers	Reject	Mark
2(a)	Starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	I_2 at start = 1 x 10 ⁻³ / 0.001 (mol)		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	1.26×10^{-3} (mol) thiosulfate (1) $6.3(0) \times 10^{-4} / 0.00063$ (mol) I_2 (1) Correct answer with no working (2) Ignore SF except 1 SF		2

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	I_2 used = $(1 \times 10^{-3} - 6.30 \times 10^{-4}) = 3.70 \times 10^{-4}$ (mol) (1) Mol SO ₂ = mol I_2 = 3.70 x 10 ⁻⁴ / 0.00037 (mol) (1) Correct answer with no working (1) ALLOW TE from (i) and (ii) Ignore SF except 1 SF		2

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(iv)	Mass SO ₂ in 100 m ³ = (64.1 x 3.70 x 10 ⁻⁴) (1) Mass SO ₂ in 1 m ³ = 64.1 x 3.70 x 10 ⁻⁴ /100 = 237(.2) x 10 ⁻⁶ g = 2.37 x 10 ⁻⁴ g (1) (= 237.2 / 237 / 240 μg) units required (∴ within limit)		2
	Allow TE from (iii) Ignore SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	Improved because titration may be repeated /averages could be taken ALLOW Smaller titration reading so greater (%) error		1

Question	Acceptable Answers	Reject	Mark
Number			
2 (c)(ii)	Larger titration reading (1) So smaller (%)error in titration reading (1) OR Smaller mass of sodium thiosulfate used to make solution (1) So greater %) error in the mass measurement (1) Second mark dependent on correct first or near miss		2
Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	Smaller titration reading as more I ₂ reacts/ less I ₂ left (1) So greater (%) error in titration reading (1) Second mark dependent on correct first or near miss) OR Smaller (%) error in measuring volume of air (1)		2