Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	CuO(s) + 2H ⁺ (aq) → Cu ²⁺ (aq) + H ₂ O(l) Left hand side (1) right hand side (1) If SO ₄ ²⁻ are on both sides max one mark ALLOW correct entities and balancing with no or incorrect state symbols for one mark. ALLOW multiples It is sometimes difficult to be sure of the '2' on	Charges within water molecule	2
	the Cu ²⁺ . Give BOD provided 2H ⁺ on the left of the equation		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	1.749/1.75/1.7 with or without working scores 2 If answer incorrect look for	1.74 1.8	2
	Mass = 79.5 x 0.02 OR =1.59 (1)		
	OR		
	TE from incorrect mass for one mark		
	Their mass x 1.1= their correct answer to 2/3/4SF (g) (1)		
	Accept crossed 7's		
	ALLOW both ways of writing 4 and be generous if 4 looks like 9		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Add in small portions / use a spatula / use a small spoon / slowly / gradually (1) To prevent (mixture / acid) boiling over / frothing / spilling / splashing / splash back (1) Mark independently	Spitting / violent reaction / fizzing Because reaction is exothermic alone	2
	Bubbles are neutral IGNORE add carefully / cautiously alone	Bubbles of carbon dioxide	

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Dip in glass rod. Remove and allow to cool. See if crystals form ALLOW any workable suggestion	Solution thickens	1
	Examples:	Precipitate forming	
	See crystals / salt forming around edge of beaker		
	Depth of colour of solution increases		
	Solution / colour becomes darker		
	Solution / colour becomes deeper blue		
	Dark blue solution		
	Reduce volume by at least half / until crystals form		

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(iii)	Blue	mention of	1
		green or other	
		colour	

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iv)	(The ions are arranged in a) regular (way) / lattice OR		1
	The ions are arranged in the same way / have same arrangement / have uniform arrangement	The ions are arranged in a similar / fixed way	
	The term structure is neutral and should be ignored	j	
	IGNORE statements about ions attracting or repelling		

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	249.6 g mol ⁻¹ ALLOW 249.5 g mol ⁻¹		2
	ALLOW 250 g mol ⁻¹		
	value (1) units (1)		
	Common wrong values are 159.5 / 6, 185.5 / 6, 249		
	ALLOW unit mark with any or no value.		
	ALLOW g / mol for unit	g/mol ⁻¹	

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Max yield = $249.6 \times 0.02 = 4.992(g)$ (1)		2
	Percentage yield = 2.7 x 100		
	4.992		
	= (54.0865) = 54% (1)		
	If 249.5 is used = (54.1082) = 54%		
	OR		
	2.7 / 249.6 = 0.01082 (1)		
	Percentage yield = 0.01082 x 100/0.02		
	= 54% (1)		
	ALLOW TE from any value in (i), and note		
	159.6 gives 84.6%		
	185.6 gives 72.7%		
	IGNORE SF except one SF		
	Correct answer, no working scores (2)		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(iii)	(Copper(II) sulfate is soluble) so some remains in solution / some remains on the filter paper	Experimental error/incomplete reaction Filtering alone	1
	IGNORE other transfer errors Incomplete crystallization / not all the		
	crystals are formed	Efflorescence	

Question Number	Acceptable Answers	Reject	Mark
1 (d)	This is a (chemical) test for (the presence of) water	Check to see if substance is hydrated	1
	Invisible ink	Drying agent	
	Moisture / humidity test		
	Test to see if solutions are aqueous	Quantitative measurements of water content.	

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	In (a) any units given must be correct. Penalise once only. IGNORE SF except 1SF. Penalise once only. TE throughout ((0.1x11.6)/(1000) = 1.16 x 10 ⁻³ / 0.00116/ 0.0012/1.2 x 10 ⁻³ (mol)		1

Question	Acceptable Answers	Reject	Mark
Number			
2(a)(ii)	$(1.16 \times 10^{-3} / 2) = 5.8 \times 10^{-4} / 0.00058 $ (mol	6 x 10 ⁻⁴	1
	I ₂ react with thiosulfate)		
	6.0x 10 ⁻⁴ if 1.2 x 10 ⁻³ used		

Question	Acceptable Answers	Reject	Mark
Number			
2(a)(iii)	$((50x0.25)/1000) = 1.25x10^{-2} / 12.5x10^{-3} / 0.0125 \text{ (mol)}$	0.012	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	= Answer to (a)(iii)- answer to a(ii) $(1.25 \times 10^{-2} - 5.8 \times 10^{-4}) = 1.192 \times 10^{-2}$ (2/0.01192) (mol reacted with tin) $(1.25 \times 10^{-2} - 5.8 \times 10^{-4}) = 1.192 \times 10^{-2}$ $(1.25 \times 10^{-2} - 5.8 \times 10^{-4}) = 1.192 \times 10^{-2}$ $(1.25 \times 10^{-2} - 5.8 \times 10^{-4}) = 1.192 \times 10^{-2}$		1
Question	ALLOW	Dojact	Mark
Number	Acceptable Answers	Reject	IVIALK
2(a)(v)	Mass of tin = answer to (a)(iv) x118.7/ $= 1.414904/ 1.415 g \qquad \textbf{(1)}$ % tin = $(\underline{1.415 \times 100}) = 13.803941$ 10.25 $= 13.8 \% \qquad \textbf{(1)}$ TE from mass if only 1 error in its calculation $13.83/ 13.8\% \text{ if } 1.194 \times 10^{-2} \text{ used}$ If answer to(a)(iv) = $5.8 \times 10^{-4} \text{ mol } I_2 \text{ this gives } 0.068846 \text{ g Sn}$ and $0.67167 \% \text{ Sn scores } \textbf{(2)}$ Correct answer without working scores $\textbf{(2)}$		2
Physics A	An Adula Dikis Tuliton foom 7.5% of SnO2		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(i)	Divide solution into separate portions for titration	Just 'repeat the titration' Use starch	1

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(ii)	$(0.05 \times 2 \times 100) = (\pm) 0.86\%$		1
	11.6		
	ALLOW 0.9%	0.90%	

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)(iii)	Use more dilute thiosulfate (to make		1
	titration reading bigger) / Use a larger		
	volume or moles of excess iodine	Use more rock	

Question Number	Acceptable Answers	Reject	Mark
2 (c)	(Pale) yellow / straw-coloured to colourless	Clear for colourless Blue / black to colourless Orange / grey / brown	1

Question	Acceptable Answers	Reject	Mark
Number			
3 (a) (i	In (a) any units given must be correct. Penalise once only IGNORE SF except 1SF. Penalise once only If rounding is done then must be correct, penalise once only TE throughout	1 x 10 ⁻³	1
	$n = (0.100 \times 0.0141) = 1.41 \times 10^{-3} / 0.00141 \text{ (mol)}$		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (ii	7.05 x 10^{-4} / 0.000705 (mol) ALLOW TE = ans to (i) ÷ 2	7.10 x 10 ⁻⁴ / 0.000710	1
	1.4 x 10 ⁻³ gives 7.0 x 10 ⁻⁴ 0.0014 gives 0.00070		

Question	Acceptable Answers	Reject	Mark
Number			
3	$c = (7.05 \times 10^{-4} \div 0.05)$		1
(a) (i	$= 1.41 \times 10^{-2} / 0.0141 \text{ (mol dm}^{-3}\text{)}$		
	ALLOW TE = ans to (ii) \div 0.05 OR ALLOW TE = ans to (ii) x 20		

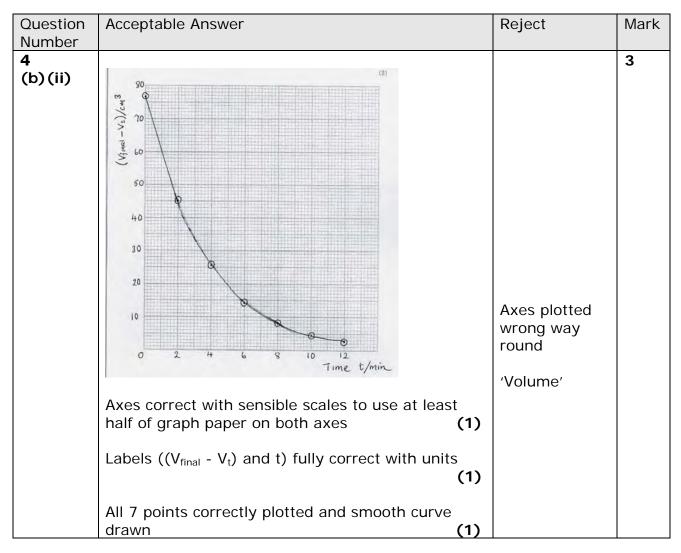
Question Number	Acceptable Answers	Reject	Mark
3 (a) (iv	Ca(OH) ₂ M _r = 74.1 (1) ALLOW 74 $m = (1.41 \times 10^{-2} \times 74.1) = 1.04481$		2
	= $1.045 = 1.04 \text{ (g dm}^{-3})$ (1) If $M_r = 74 \text{ then m} = 1.0434 = 1.04 \text{ (g dm}^{-3})$	1.05	
	ALLOW TE = ans to (iii) x 74.1 ALLOW TE for second mark if ans to (iii) x incorrect Mr value		
	OR		
	7.05 x 10^{-4} x $74.1 = 0.0522405 = 0.0522$ (g) (1)		
	$(0.0522 \div 0.05) = 1.044 \text{ (g dm}^{-3})$ (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (v)	It's only a rangefinder / It's a rough OR approximate titration / It's an estimation / More than 0.2 cm³ from other titres / Overshot on first titration / Not concordant ALLOW It is anomalous / It is out of range It differs / is not consistent with titrations 1 and 2 Titrations 1 and 2 are more consistent If a list of suggestions is given, a wrong cancels a right	Not titrated accurately It is not precise Control Just 'it's a trial'	1

Question Number	Acceptable Answers	Reject	Mark
3 (a) (vi	Pipette 50.0 cm³ (of distilled water) into weighed beaker and find the mass ALLOW "fill the pipette" (with water) and transfer into weighed beaker and find the mass / measure the mass of the pipetted distilled water (1) ALLOW alternative containers to beaker.	"Transfer 50cm ³ water into a beaker" without reference to pipette.	2
	Use the density of water to determine the exact volume / density of water is 1(.00)g cm ⁻³ /check it weighs 50(.0) g (1) Stand-alone marks	Approx. 50g Use of lime water Use of solution	

Question Number	Acceptable Answers		Reject	Mark
3 (b)	A – (Strong) heat / high temperature	(1)	Reflux Combustion / burnt Answers suggesting reaction with air or oxygen	4
	B – CaCl ₂ + H ₂ O (Both needed) C – Ca(OH) ₂ D – Ca IGNORE state symbols even if wrong IGNORE any number in front of species, e.g. $\frac{1}{2}$ O ₂ or 2Ca given in D	(1) (1) (1)	CaCl CaOH Ca ₂	

Question Number	Acceptable Answers	Reject	Mark
3 (c)	Bubble(s) / Fizz(ing) / Effervescence IGNORE references to colourless solution, solid disappearing and energy / temperature changes and further tests eg effect on limewater	Coloured or colourless fumes Cloudy solution Just 'CO ₂ forming' Just '(colourless) gas forming' Bubbles of any gas except CO ₂	1


Question Number	Acceptable Answers	Reject	Mark
3 (d)	Method 1: Calcium is larger ion / calcium has a bigger ionic radius / or reverse argument for magnesium ion Use of the reverse argument applies throughout (1)	Calcium is bigger Any reference to atoms/molecules scores 0	2
	(Distance between centres of ions increases so) weaker attraction/weaker bond between (calcium and carbonate) ions OR	Reference to ionization energy/weaker attraction for own electrons	
	Shielding is greater in the calcium ion so weaker attraction (of calcium nucleus for carbonate ion) (1)		
	Method 2: Calcium ion has a lower charge density (1)		
	weaker attraction (between ions) (1)		
	IGNORE references to polarization and the breaking of the covalent bonds in the carbonate ion		

Question Number	Acceptable Answers		Reject	Mark
3 (e)	Calcium's flame is yellow-red /orange-red / brick red	ed /	Crimson	3
	Magnesium has no colour (Both needed for first mark)	(1)	Magnesium is white / bright	
			Just "Mg / Ca decomposes"	
	Electrons excited / promoted (by heat energy)	(1)	Electrons escape the orbitals	
	(Colour produced from) energy / light emitted as electron returns (to ground state)	(1)		

Question Number	Acceptable Answers		Reject	Mark
4(a)(i)	Mass of bromobutane = 0.6 x 1.276 (=0.7656 (g)) Amount of bromobutane = 0.6×1.276 137.0 = 5.5883 x 10 ⁻³ = 5.59 x 10 ⁻³ / 0.00559 (mol) OR	(1)		2
	Amount of bromobutane = 0.6×1.276 136.9 = 5.5924 x 10 ⁻³ = 5.59 x 10 ⁻³ / 0.00559 (mol) TE on incorrect mass ALLOW 6 x 10 ⁻³ (mol)	(1)		
	Correct answer with no working scores 2 marks			

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	5.5883 x 10 ⁻³ x 24 000 = 134.12 (134.22 from 136.9)=134 cm ³ (1) ALLOW answer from (i) x 24000		3
	IGNORE SF except 1 Any two from:		
	Formation of butan-1-ol / other / side reactions	Transfer losses	
	Incomplete reaction	Gas escapes Gas reacts with water	
	Some but-1-ene may remain in solution (2) IGNORE	But-1-ene condenses	
	Reaches equilibrium / reaction reversible But-1-ene reacts with ethanol/ solvent		

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	So [OH-] remains (effectively) constant	Ensure that all C ₄ H ₉ Br reacts	1
	OR [1-bromobutane] is the only variable	[OH-] is in excess	
	IGNORE So [OH-] is not the limiting factor	[OH-] does not affect the rate Just 'Only [1-bromobutane] affects the rate'	

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iii)	(V _{final} - V _t) is proportional to the concentration of 1-bromobutane		1

,	2
•	(min) rk) (2)

Question Number	Acceptable Answers	Reject	Mark
4(b)(v)	Answer must be consistent with values in (iv)		2
	Because half lives are constant / similar (1)		
	The reaction is first order (1)		
	If values in (iv) are 2.5 and 5, then:		
	Reaction is 2 nd order because half lives are increasing scores both marks.		
	Reaction is 1 st order because half lives are constant scores 1 mark		

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(i)	Order one (1)		2
	Any one of:		
	(Exp 1 and 2) [OH-] halves and rate halves.		
	(Exp 1 and 3) [OH-] 1/5 and rate 1/5		
	(Exp 2 and 3) [OH-] 2/5 and rate 2/5		
	ALLOW reverse logic (1)		

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(ii)	Rate = k[C ₄ H ₉ Br][OH ⁻] IGNORE case of K/k		1
	TE on b(v) and c(i)		

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	dm³ mol-1 min-1 ALLOW dm³ mol-1 s-1 any sequence of units TE on (ii)		1

Question Number	Acceptable Answers	Reject	Mark
4(c)*(iv)	Arrows from OH-to H and from C-H bond to make additional bond between carbons (1) Third arrow from bond between carbon and bromine to bromine (1) (Because) both 1-bromobutane and hydroxide ion appear in the RDS ALLOW Attack of OH- on H is slow, therefore this is the RDS (Because) both 1-bromobutane and hydroxide ion appear in the slow step (1) IGNORE mention of rate equation	Both are involved in the reaction Mechanism described as S _N 2	3