Question Number	Correct Answer	Reject	Mark
1(a	The salt dissolves in the water (of crystallization) / the salt dissolves in (its) water of crystallization NOTE: For M1 it needs to be clear that the water came from the initial solid (1) M2: Water boils/water evaporates (1)	Any mention of 'melt(s)'	(3)
	M3: (Anhydrous) magnesium nitrate / Mg(NO ₃) ₂ crystallizes OR (Anhydrous) magnesium nitrate / Mg(NO ₃) ₂ is formed ALLOW for M3: (White) solid formed as the concentration becomes too high / as water is driven off		
	OR Solid reforms/forms		
	(1)		

Question Number	Correct Answer		Reject	Mark
1(b)(i)i)	NO 1: The chemicals identified MUST corresponds to the correct Stage number	ond		(3)
	NOTE 2: Award mark in each case for either the correct name or the correct formula. HOWEVER if both a name AND a formula are given, BOTH must be correct.			
	Stage 5 : Nitrogen dioxide / NO ₂ / N ₂ O ₄ (is the brigas)	own (1)		
	Stage 6: Oxygen / O ₂ (relights a glowing splint)	(1)	Just "O" for oxygen's formula	
	Stage 7: Magnesium oxide / MgO (is the white solid)	(1)		

Question Number	Correct Answer	Reject	Mark
1(b)(ii)	2Mg(NO ₃) ₂ .6H ₂ O → 2MgO + 4NO ₂ + O ₂ +12H ₂ O Ignore state symbols even if incorrect ALLOW multiples ALLOW 2N ₂ O ₄ for 4NO ₂ M1 Correct entities (1) M2 Balancing (1) M2 depends on M1 Special case If the anhydrous salt equation is given: 2Mg(NO ₃) ₂ → 2MgO + 4NO ₂ + O ₂ scores 1 max		(2)
	ALLOW 2N ₂ O ₄ for 4NO ₂ M1 Correct entities (1) M2 Balancing (1) M2 depends on M1 Special case If the anhydrous salt equation is given:		

Question Number	Correct Answer	Reject	Mark
1(c)(i)	(Magnesium chloride) Colourless / no colour (1)	UV/white/bright white	(2)
	(Calcium chloride) Yellow-red OR brick-red OR red	Crimson	
	ALLOW Orange-red (1)	Just 'orange' Just 'yellow'	

Question Number	Correct Answer	Reject	Mark
1 (c)(ii)	 for idea of electrons being promoted (Heating) promotes electrons / excites electrons (to higher energy levels) 	Just molecules gain energy	(3)
	M2 – for idea of electrons falling back down Electrons fall back (to lower levels / ground states) (1) M3 – for idea of emission of light Emitting (visible) light / emitting photons (1)	No M3 if mention of energy / light absorbed	

Question Number	Correct Answer	Reject	Mark
1(c)(iii)			(2)
	EITHER		
	In magnesium the energy levels are further apart / the energy levels are different	Just "no transitions for magnesium"	
	OR		
	In calcium the energy levels are closer / the energy levels are different		
	IGNORE		
	Any comparison of the relative numbers of energy levels		
	M2:		
	For magnesium, the energy released is outside the visible spectrum / visible region		
	OR		
	For calcium, the energy released is inside the visible spectrum / visible region		
	OR		
	the energy released is in the red region (of the spectrum)		
	OR		
	Different amounts of energy are released		
	OR		
	Different frequencies / wavelengths emitted		
	(1)		
	Mark these points independently		

Question Number	Acceptable Answers		Reject	Mark
2(a)(i)	Ba(s) $+2H_2O(I) \rightarrow Ba(OH)_2(aq) + H_2(g)$ OR			2
	Ba(s) + $2H_2O(I) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$ H ₂ (g)	+	Ba ₂ H ₂ O(aq) BaO ₂	
	Correct products	(1)	2002	
	State symbols and balancing	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
2(a)(ii)	Ba(increases in ON) from 0 to +2 (1)		2
	H (decreases in ON) from +1 to 0 (1)		
	TE from (a)(i)	Inclusion of oxygen changes will lose 1	
	Stand-alone marks	mark	

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Ba(OH) ₂ + 2HCI \rightarrow BaCl ₂ +2H ₂ O IGNORE state symbols even if incorrect ALLOW H ⁺ +OH ⁻ \rightarrow H ₂ O TE from (a)(i): BaO + 2HCI \rightarrow BaCl ₂ + H ₂ O		1

Question Number	Acceptable Answers	Reject	Mark
2 (c)	White precipitate / white solid / white crystals (rather than colourless solution) (1)	'Cloudy' alone	2
	Barium sulfate is insoluble (whereas barium chloride is soluble) (1) Stand-alone marks		

Question Number	Acceptable Answers		Reject	Mark
2 (d)(i)	If flame test is described in (d)(i) the award appropriate marks for (d)(ii) A correct decomposition equation gin (d)(i) would score 1 mark. Allow valid discussion of thermal stability appearing in (d)(ii) for mark.	iven		2
	(d) (i)	K III		
	Barium carbonate is more thermally sta (than magnesium carbonate) / requires more heating / needs a higher temperate		Just 'barium'	
	/ decomposes more slowly / produces carbon dioxide more slowly		Just 'produces more carbon dioxide'	
	OR			
	Reverse argument (MgCO ₃ decomposes faster)		Just 'magnesium'	
	ALLOW BaCO ₃ doesn't decompose on heating but MgCO ₃ does	(1)		
	$MCO_3 \rightarrow MO + CO_2$ Where M stands for Mg or Ba	(1)		
	IGNORE state symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	Flame test or description of: Mg does not colour flame (1) ALLOW colourless / clear	Magnesium gives white / bright flame	2
	Ba: (pale / apple) green flame (1)	'blue-green'	
	Stand-alone marks	Instrument analysis	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$2KNO_3 \rightarrow 2KNO_2 + O_2$ Or multiples or equation divided by 2 ALLOW O_2 on LHS if balanced by additional O_2 on RHS IGNORE state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$ Or multiples or equation divided by 2 ALLOW O_2 on LHS if balanced by additional O_2 on RHS IGNORE state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Brown gas (ALLOW fumes or vapour) evolved (1) IGNORE Effervescence/bubbles EITHER (White) solid melts (and then solidifies/freezes) OR		2
	(Colourless) liquid forms (1) IGNORE white solid formed		

Question Number	Acceptable Answers	Reject	Mark
3 (c)	Penalise any omission of reference to ion in MP 1 only but calcium ions or Ca ²⁺ and potassium ions or K ⁺ are equivalent Marking Point 1 Calcium ions have greater positive charge (than potassium ions) OR Calcium ions 2+ but potassium ions 1+ OR Ca ²⁺ but K ⁺ OR calcium ions are smaller (than potassium ions) OR calcium ions have greater charge density (1)		3
	Marking Point 2 ∴ Calcium (ions) more polarising or cause greater distortion (1) Marking Point 3 Of nitrate (ion) OR anion OR N-O / N=O(bond) OR nitrate electron cloud (1)		
	Reverse argument for K ⁺ gains full marks		

Question	Correct Answer	Reject	Mark
Number			
4 (a)(i)	Use of heat (1)		2
	To break down (a reactant)/one		
	reactant into more than one		
	product (1)		

Question	Correct Answer	Reject	Mark
Number			
4 (a)(ii)	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$		1
	Allow correct multiples		

Question Number	Correct Answer	Reject	Mark
4 (a)(iii)	Group 2 carbonates are more (thermally) stable as you go down the group (1)		3
	as the cations get bigger/charge density gets less/cation has more shells (1)	Metal gets bigger/element gets bigger	
	So have less of a polarising effect/distortion on the carbonate (ion)/less of a weakening effect on C-O (1)	Carbonate molecule	
	2nd and 3rd marks cq on first		

Question Number	Correct Answer	Reject	Mark
4 (b)(i)	orange	Yellow Any colour in conjunction with	1
		orange	

Question	Correct Answer	Reject	Mark
Number		-	
4 (b)(ii)	$(18.0/1000 \times 0.100) = 1.8 \times 10^{-3}$ $/0.0018/2 \times 10^{-3}/0.002$ <i>IGNORE</i> sf and units even if incorrect		1

Question Number	Correct Answer	Reject	Mark
4 (b)(iii)	(50/1000 x 0.100) = 5 x 10 ⁻³ (1) [If candidate fails to divide by 1000		2
	in both (b)(ii) and b(iii) penalise only once]		
	Moles HCI reacted = 3.2×10^{-3} (can get first mark here if 5×10^{-3} not shown above) So moles CaO = 1.6×10^{-3} (1)		
	IGNORE sf		
	Allow TE from b (ii)		

Question Number	Correct Answer	Reject	Mark
4 (b)(iv)	Mass CaO = $(1.6 \times 10^{-3} \times 56.1)$ = 0.0898 g (1)		2
	% purity = 0.0898/0.121 x100 = 74.2% (1)	Any % purity without 3 sf for second mark	
	OR		
	Allow % calculated in terms of moles e.g moles of CaO should be 0.121 x 56.1 = 0.0021568 (mol) (1)		
	% purity = 0.0016/0.0021568 = 74.2% (1)		
	Accept = (1.6 x 10 ⁻³ x 56) = 0.0896 g (1)		
	% purity = 0.0896/0.121 x100 = 74.0% (1)		
	Allow TE of incorrect moles of CaO from (b)(iii)		
	Allow TE from incorrect mass of CaO if answer is ≤100%		
	0.09 g and 74.4% is 1 out of 2 (rounding too soon)		

Question Number	Correct Answer	Reject	Mark
4 (c)(i)	(Clean) nichrome/platinum wire/ceramic rod/silica/nickel/chrome rod (1) (In conc.) HCI/HCI(aq)/dilute HCI (1)	Metal loop/inoculating loop/glass rod/silver/spatula	3
	Heat/place in (blue Bunsen) flame (1)	Place in yellow Bunsen flame/burn	

Question	Correct Answer	Reject	Mark
Number			
4 (c)(ii)	Barium/Ba/Ba ²⁺		1