Question Number	Correct Answer	Reject	Mark
1 (a)(i)	Hydrogen bonding Hydrogen bond(s) H bonding H bond(s)	Not "hydrogen" on its own Dipole-dipole bond Permanent dipole-dipole bond Covalent bond van der Waals' (forces) Temporary dipole-dipole Induced dipole-dipole London forces	1
	Notes Accept phonetic/incorrect spelling as long as the word is recognisable	Any correct answer in conjunction with an incorrect response, eg hydrogen dipoledipole bond.	

Question Number	Correct Answer	Reject	Mark
1 (a)(ii)	(Fluorine atom) is more electronegative (1) Because it has less shielding / (bonding) electrons closer to the nucleus/smaller /has less shells (so greater pull from nucleus on bonding electrons) (1) so HF has a (greater) dipole moment/H ^{ō+} on HF (greater than on HBr)/HF is (more) polar (1)		3

Question	Correct Answer	Reject	Mark
Number		-	
1 (a)(iii)	Between 150 - 180 (K) Accept a range within the range e.g. '150-170'	°C	1

Question Number	Correct Answer	Reject	Mark
1 (b)(i)	Because propanone has both polar and non polar characteristics/can form both London forces and H bonds/can form London forces and dipole-dipole forces OWTTE (1)		1
	London forces can be described as Van der Waals VDW Temporary dipole-dipole Instantaneous dipole-induced dipole		

Question Number	Correct Answer	Reject	Mark
1 (b)(ii)	Water: Hydrogen bonds with the (oxygen of the) carbonyl group/H bonds to the oxygen (1) Octane: London forces with methyl groups/carbon chain/CH groups/H atoms (1) Both forces given allow (1)	Carbon atoms	2

Question Number	Acceptable Answers	Reject	Mark
2(a)	London/dispersion forces greater (ALLOW 'more') (in HI) ALLOW van der Waals forces/ temporary dipole (forces)/induced dipole (forces) Just 'Intermolecular (forces)' does not score this mark Stand alone mark		3
	(1)		
	Any two from		
	Because (Iodine/HI) has more electrons/iodine has more electron shells ALLOW bigger surface area (1)	Iodide/bromide More electrons in the bond HI has more electron shells	
	(So) more energy needed (ALLOW 'harder') to separate molecules / break the (London) forces ALLOW more energy needed to boil compound ALLOW intermolecular (forces) here (1)	Just 'easier to boil compound'	
	Permanent dipole in HI is weaker than the permanent dipole in HBr (1)		
	The increase in London forces (from HCl to HI) outweighs the decrease in permanent dipole (1)		

Question Number	Acceptable Answers	Reject	Mark
2(b)	HF has hydrogen bonding (and HCl does not)	Just `HF has stronger intermolecular	3
	Stand alone mark (1)	forces (than HCI)'	
	Any two from	HF/F ⁻ for fluorine	
	Fluorine very electronegative/more electronegative than chlorine (1)		
	Hydrogen bonding is (much) stronger (than other/named intermolecular forces) ALLOW Hydrogen bonding is (very) strong (1)		
	So more energy needed (ALLOW 'harder') to separate molecules/ break the hydrogen bonds ALLOW more energy needed to boil compound (1)	Just 'easier to boil compound'	
	HCl has London/dispersion (and (weak) dipole-dipole) forces ALLOW (weak) dipole-dipole forces ALLOW 'Only London/dispersion forces' (1)		
	ALLOW van der Waals forces/ temporary or induced dipole forces for London/dispersion		

Question Number	Acceptable Answers	Reject	Mark
2(c)	Water forms (up to) two hydrogen bonds (per molecule but HF only one).	More/stronger/ greater than two	1
	IGNORE references to numbers of lone pairs.		

Question	Acceptable Answers	Reject	Mark
Number			
3 (a) (i)	Each mark is independent		3
	Diagram of separating funnel with tap. Sides can	Filter funnel with tap	
	be straight or bulbous. Top can be stoppered or		
	unstoppered, but not sealed (eg inverted test-		
	tube with tap at bottom). (1)		
	Allow straight sides with an open top		
	T	Thurst Issues	
	Two layers. Upper layer is hydrocarbon layer (1)	Three layers	
	Colour pink/purnle/mouve Allow violet (1)	Montion of any other	
	Colour - pink/purple/mauve. Allow violet (1)	Mention of any other colours on their own	
		(e.g. grey, brown, red) or in combination	
		with those accepted.	
		with those accepted.	

Question Number	Acceptable Answers	Reject	Mark
3 (a) (ii)	$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$ Ignore state symbols	Formation of Fe ⁺	1
	Allow multiples/half amounts shown Accept answers involving I ₃ ⁻		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	Answers must refer to oxidation/reduction Sulfuric acid oxidizes (hydrogen/potassium) iodide (to iodine) OR (hydrogen) iodide reduces sulfuric acid	Sulfuric acid oxidizes iodine/oxidizes iodide to iodide	1
	OR Phosphoric((V)) acid does not oxidize (hydrogen) iodide (to iodine) (as well as sulfuric acid does) Allow sulfuric acid is a strong(er)/good oxidizing agent/phosphoric(V) acid is a weaker oxidizing agent	Phosphoric acid is a better reducing agent Comments about hazards or strength of sulfuric acid alone Stability of phosphoric(V) acid alone	

Question Number	Acceptable Answers	Reject	Mark
3 (b) (ii)	Water rises in the test tube	Steamy fumes	1
	Allow the gas /HI is soluble / dissolves	Any coloured solutions forming even if with the acceptable/allowed answer	
		Water would displace the gas	

Question Number	Acceptable Answers	Reject	Mark
3 (b) (iii)	$NH_3(g)/(aq) + HI(g) \rightarrow NH_4I(s)$ Species and balanced equation (1) Allow $NH_4^+ + I^-$ for product All state symbols present (dependent on the entities above) (1)	NH₃I NH₃HI NIH₄	2

Question Number	Acceptable Answers	Reject	Mark
3 (c) (i)	$PI_3 + 3C_4H_9OH \rightarrow 3C_4H_9I + H_3PO_3$ Accept multiples		1
	Allow P(OH) ₃ , PH ₃ O ₃ , H ₂ O + HPO ₂ , as product/s		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (ii)	Both points required		1
	Van der Waals' / London / dispersion / induced dipole / temporary dipole (forces) in 1-iodobutane	Any mention of hydrogen bonding (0)	
	Allow recognisable spelling of van der Waals'		
	and		
	(permanent) dipole dipole/permanent dipole (forces)		
	Allow dipolar-dipolar		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (iii)	Yellow precipitate /ppt /ppte / solid The answer may appear with additional words and phrases: e.g. two clear colourless solutions form a yellow precipitate which is insoluble in concentrated ammonia solution	Off-white Cream Any other colours and combinations of yellow with any other colours Any other qualifications of yellow eg pale/light Any answers which include bubbles, fizzing, effervescence	1
	Allow bright yellow, sunshine yellow		
	Allow recognisable spelling eg yello percipitate		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (iv)	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ /CH ₃ (CH ₂) ₃ NH ₂ /CH ₂ (NH ₂)CH ₂ CH ₂ CH ₃ / NH ₂ CH ₂ CH ₂ CH ₂ CH ₃ / H ₂ NCH ₂ CH ₂ CH ₂ CH ₃ /(CH ₃ CH ₂ CH ₂ CH ₂) ₂ NH /(CH ₃ CH ₂ CH ₂ CH ₂) ₃ N	NH ₄ I NH ₃ instead of NH ₂ Three carbon chains Missing hydrogens	1
	Allow displayed and skeletal formulae, C ₄ H ₉ NH ₂ Salts of amines which must include a positively charged ion and 1 ⁻	C ₄ H ₁₁ N	