1.

Question Number	Acceptable Answers		Reject	Mark
1(a)	$Mg(g) \rightarrow Mg^{+}(g) + e^{(-)}$ ALLOW $Mg(g) - e^{(-)} \rightarrow Mg^{+}(g)$ Loss of electron to form Mg^{+} IGNORE (g) sign on electron	(1)	Formation of Mg ²⁺	(2)
	State symbols ALLOW Provided the equation involves magnesium, even if electron is added to the wrong side.	(1)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	(1s ²) $2s^22p^6 3s^23p^1$ ALLOW Capital s and/or p, subscripts $2p_x^2 2p_y^2 2p_z^2 3p_x^1$ $3p_y^1 / 3p_z^1$ for $3p_x^1$		(1)

Question Number	Acceptable Answers	Reject	Mark
*1(c)((i)(Mg to AI: Electron removed from AI is from a higher energy level (3p rather than 3s) ALLOW Electron removed in AI is (more) shielded (by 3s) IGNORE Outer electron is further from nucleus Full sub-shell is more stable than part filled sub-shell (1)		(3)
	MP2 Al to Si: Si has one more proton than Al/ has greater nuclear charge, and electrons removed in both cases are 3p / same sub-shell / are equally shielded (1)		
	MP3 EITHER The attraction of the extra proton in AI is less than the effect of the higher energy level/ the shielding		
	OR Electron removed from Si is closer to nucleus (than Al) ALLOW Silicon is smaller in size (1)		

Question	Acceptable Answers	Reject	Mark
Number 1(c) (ii)	MP1 S does not follow trend (P is above Si followed by dip in graph from P to S rising again to CI and Ar) (1)		(3)
	MP2 S has one (3)p orbital which has two electrons/ paired electrons/ is fully occupied OR S has $3p_x^2$, $3p_y^1$, $3p_z^1$ OR Electron in box diagram for S ALLOW S has a pair of electrons in the (3)p subshell (1)	Just "S has 3p ⁴ " d orbital	
	A paired electron is easier to remove OR paired electrons repel each other ALLOW half filled sub-shell (in P) is stable (1)	P has a half filled orbital	

Question Number	Acceptable Answers	Reject	Mark
1 (d)	Four x round Si sharing one • with each Cl (1) Seven • round each Cl sharing one x with each Si (1)		(2)
	: CL:		
	: CL. Si × CL:		
	:CL:		
	Reversed symbols		

Question Number	Acceptable Answers	Reject	Mark
1(e)(()e)(I ⁻ / anion becomes distorted / not spherical. May be shown in a diagram (1) MP2 Mg²+ has high(er) charge and small(er) radius/ Mg²+ has high charge density (1) MP3 Bonding in magnesium iodide has some covalent character OR Orbitals of Mg²+ and I⁻ overlap/ Mg²+ shares some of the I⁻ electrons OR Mg²+ and I⁻ ions are not completely separate (1)	Iodine becomes distorted Just "electrons in outer shell are attracted" Atoms of Mg have a small (atomic) radius	(3)

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	Experimental/ Born Haber cycle and theoretical/ calculated lattice energies are different OR Experimental/ Born Haber cycle lattice energy is more exothermic/ more negative than theoretical/ calculated lattice energy ALLOW	Just "Compare Experimental/ Born Haber cycle and theoretical/ calculated lattice energies"	(1)
	Greater for more negative IGNORE Comments about melting temperature	Use of electron density map	

(Total for Question = 15 marks)

Question Number	Acceptable Answer	rs		Reject	Mark
2(a)	(Protons) (Electrons) (Neutrons) All three numbers	18 18 22 correct fo	or the mark		1

Question Number	Acceptable Answers	Reject	Mark
2(b)	(Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom) OR K (atom) has (one) more proton(s) (than Ar atom) OR K has atomic number 19 (whereas) Ar has atomic number 18 OR Ar has 18 protons, K has 19 protons IGNORE 'Elements are not arranged in order of (relative) atomic mass' IGNORE Mention of numbers of electrons / numbers of shells (of electrons)		1
	IGNORE Arranged in vertical groups in accordance to properties / Argon is a noble gas		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	First mark Property / trend / pattern ALLOW Any named property (e.g. atomic radius, ionization energy, melting temperature) (1)		2
	Second mark Repeated (across each period)		
	OR		
	Regular (across each period)		
	OR		
	Re-occurring (across each period) (1)		
	NOTE Statement such as: "A repeating trend across a period / across each period" scores (2)		

Question	Acceptable Answers	Reject	Mark
Number			
2 (d)(i)	Phosphorus / P / P ₄		1
	OR		
	Sulfur / S / S ₈		
	OR		
	Chlorine / Cl / Cl ₂		
	IGNORE		
	Argon / Ar		

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	(The covalent) bonds are strong (throughout the lattice) (1)	MENTION OF ANY OF THE FOLLOWING SCORES (0) OVERALL	2
	(therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions	'(simple) molecular silicon' (0)	
	(between atoms) / 'more energy' is required to break the bonds /'more energy' is needed to overcome the	'molecules of silicon' (0)	
	attractions (between atoms) / 'greater amount of energy' is required to break the bonds /'greater amount of energy' is needed to overcome the	'silicon has ions' / 'silicon is ionic' (0)	
	attractions (between atoms) (1)	'intermolecular forces' / 'van der Waals' forces' / 'London forces' / 'forces between the molecules' (0)	
		'metallic bonding' (0)	

Question	Acceptable Answers	Reject	Mark
Number 2(d)(iii)	ALLOW reverse arguments in each case		3
	Any two from four:-		
	magnesium ions / magnesium atoms are smaller (than sodium ions / sodium atoms)(1)		
	NOTE: Allow symbols (e.g. Mg or Mg ²⁺)		
	 magnesium ions are Mg²+ whereas sodium ions are Na⁺ OR Mg²+ / magnesium ions have a larger charge (density) (than Na⁺/sodium ions) (1) 		
	[NOTE: It follows that the statement that "Mg ²⁺ ions are smaller than Na ⁺ ions" would score the first two scoring points above]		
	magnesium has more delocalised electrons (than sodium)(1)		
	IGNORE 'free electrons' IGNORE just 'sea of electrons'		
	•magnesium is close-packed (but sodium is not close-packed) (1)		
	Third mark (stand-alone): · more / a lot of (heat) energy is needed to break (metallic) bonds in Mg (than in Na)	attraction between nucleus and (delocalised) electrons (no third mark)	
	OR		
	attraction between the positive ions and (delocalised) electrons is stronger in magnesium (than in sodium) (1)	mention of intermolecular forces / molecules (no third mark)	

IGNORE Just 'metallic bonding in Mg stronger than that in Na'	ionic bonding (no third mark)	
	attraction between Mg ²⁺ ions (no third mark)	
	NOTE: arguments based on ionization energies scores (0) overall	
	OR any suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	

(Total for Question = 10 marks)

Question Number	Acceptable Answers		Reject	Mark
3(a)(i)	B acceleration	(1)	B just electric field	2
	C deflection	(1)	C just magnetic field	
	Allow			
	B ions are accelerated/ accelerating			
	C ions are (being) deflected			

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$(A_r \text{ for } K) = (39 \times 0.9322) + (40 \times 0.0012) + (41 \times 0.0666) \text{ or a}$ correct fraction using percentages (1)		2
	= 39.1344 = 39.13 (1)		
	Correct answer without working scores 2 Max 1 if not to 2 decimal places Second mark dependent on first		
	IGNORE Units of any kind (e.g. 'g', 'g mol ⁻¹ , 'amu', etc.)		

Question Number	Acceptable	Answers	Reject	Mark		
3 (a)(iii)				1		
	Isotope	Electrons	Protons	Neutrons		
	³⁹ K	19	9	20		
	⁴¹ K	19	9	22		

Question Number	Acceptable Answers	Reject	Mark
3(a) (iv)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ Fully correct		1
	Ignore additional 1s ²		

Question Number	Acceptable Answers	Reject	Mark
3(a)(v)	(Position in the Periodic Table) depends upon atomic number / proton number		1
	OR Ar (atom) has (one) fewer proton(s) (than K atom)		
	OR K (atom) has (one) more proton(s) (than Ar atom)		
	OR K has atomic number 19 (whereas) Ar has atomic number 18		
	OR Ar has 18 protons, K has 19 protons		
	IGNORE 'Elements are not arranged in order of (relative) atomic mass'		
	IGNORE Mention of numbers of electrons / numbers of shells (of electrons)		
	IGNORE Arranged in vertical groups in accordance to properties / argon is a noble gas		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (vi)	One fewer shell of electrons (1)		2
	Electrons in the ion are held more tightly		
	OR Same number of protons attracting fewer electrons		
	OR Less repulsion between (remaining) electrons (1)		
	IGNORE References to effective nuclear charge / charge density		

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Regular lattice of singly-positively charged (potassium) ions		2
	(1)		
	Delocalised electrons / sea of electrons / mobile electrons		
	(1)		
	e.g.		
	() () () () () () () () () ()		
	Accept other regular arrangements Unlabelled diagram max (1)		

Question Number	Acceptable Answers		Reject	Mark
3(c)(i)	First mark:- Makes mention of energy/enthalpy/(heat) energy/heat (change) AND to remove an electron		"Energy given out" for first mark	3
	Second mark:	(1)		
	one mole/1 mol	(1)		
	Third mark: Makes mention of gaseous atom(s)	(1)	Just 'gaseous element'/ 'gaseous substance'	
	ALTERNATIVE ANSWER Energy change per mole for	(1)	Sabstance	
	$X(g) \to X^+(g) + e^{(-)}$	(2)		
	One mark for species One mark for correct state symbols			
	Mark independently			
	IGNORE any references to standard conditions			

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	Potassium is E (1)		2
	Alkali metals always have the lowest first ionization energy in their period OR It follows a noble gas/ an element with very high first ionization energy OR Ionization energy falls (significantly) at the start of a (new) period / Ionization energy falls (significantly) after D (1)		

Total for Q19 = 16 marks

Question Number	Acceptable Answers			Reject	Mark
4(a)					2
	Isotope	¹³¹ ₅₃	¹²⁷ ₅₃		
	Number of protons	53	53		
	Number of neutrons	78	74		

Question Number	Acceptable Answers	Reject	Mark
4(b)	Xenon / Xe / ₅₄ Xe / Xe ₅₄ / ¹³¹ Xe	Anything else including: 130 Xe ₅₄ Xe ⁻ Iodine / I with or without numbers Hydrogen / H with or without numbers Te	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)	Potassium iodide / KI	HI KI ₃	1
	Accept any soluble, non-toxic iodide or iodate	Wrong formulae like Cal, MgI Wrong name like	
	Wrong name, correct formula (0)	calcium idodate Bal ₂ (toxic)	
	Correct name, wrong formula (0)	AgI (insoluble) Potassium iodine	

Question Number	Acceptable Answers	Reject	Mark
	Country /ALLOW state and justification Both needed for one mark e.g. Japan / New Zealand / California etc Country / state at risk from Earthquake / tsunami / flooding Further examples: Italy with volcanoes Afghanistan / middle eastern / African countries terrorist / (nuclear) weapon threat / war zone / political instability / abuse of nuclear power.	mejectpopulation densitylandslidetoo hot surrounded by other countries Antarctica	Mark 1
	· ·		
	California San Andreas fault		

Total for Question = 13 Marks

Question Number	Acceptable Answers		Reject	Mark
5 (a)	$As(g) - e^{(-)} \rightarrow As^+(g)$			2
	OR			
	$As(g) \rightarrow As^{+}(g) + e^{(-)}$ Entities	(1)		
	All species gaseous providing a reasonable attempt at an ionization energy	(1)		
	Examples: $As(g) + e^{(-)} \rightarrow As^{+}(g)$ $As(g) - e^{(-)} \rightarrow As^{-}(g)$ $As^{2+}(g) - e^{(-)} \rightarrow As^{3+}(g)$		$As(g)+e^{(-)} \rightarrow As^{-}(g)$ (electron affinity)	
	IGNORE state symbol of electron			
	ALLOW upper case / large S in arsenic			
	ALLOW As(g) + $e^{(-)} \rightarrow As^{+}(g) + 2e^{(-)}$	(2)		

Question Number	Acceptable Answers		Reject	Mark
5 (b)	AsH ₃ / H ₃ As	(1)		2
	H ₂ Se / SeH ₂	(1)		
	IGNORE charges			
	ALLOW upper case / large S in arsenic		SE for Selenium	
	NOTE: If two or more answers given for one element mark that element on a plus mi basis	inus		
Question Number	Acceptable Answers		Reject	Mark
5 (c)(i)	4s 4p			2
	As $\begin{bmatrix} Ar \\ 3d^{10} \end{bmatrix}$ $\uparrow \downarrow$ \uparrow	\uparrow		
	Se $\begin{bmatrix} Ar \end{bmatrix}$ $\uparrow\downarrow$ \uparrow	\uparrow		
	One mark for each row			
	Arrows may be half-headed			
	Arrows must be in same direction if in s occupied boxes (can be down)	ingly		
	ALLOW two arrows for Se in any 4p box			
	Selenium two arrows must show opposispins	te		

Question Number	Acceptable Answers	Reject	Mark
5 (c)(ii)	For parts c(ii),d and e it is important to keep in mind the two elements involved in each part As and Se		2
	First mark:		
	EITHER In Se, (spin) pairing has occurred (for the first time in that p sub-shell)		
	OR		
	electron removed from orbital containing two electrons (1)		
	ALLOW sub-shell for orbital		
	Second mark:		
	EITHER		
	(Increase in) repulsion (so electron lost more easily)		
	OR		
	Half-filled (sub-) shell/allow orbital (particularly) stable (in As)		
	ALLOW orbital for sub-shell (1)		
	Mark each point independently		
	IGNORE reference to distance from nucleus and shielding		

Question Number	Acceptable Answers	Reject	Mark
5 (d)	Se and Kr		2
	First mark:		
	EITHER		
	The nuclear charge is increasing (Nuclear must be stated or clearly implied)		
	OR		
	number of protons / atomic number is increasing (1)		
	Second mark:		
	(Outermost) electron closer to nucleus / electron is removed from the same (sub)shell / electron experiences similar shielding / (atomic) radius is smaller/smaller atom (1)	Ionic radius Molecule (unless monatomic)	
	ALLOW reverse arguments for selenium		
	IGNORE Kr has full outer shell		

Question Number	Acceptable Answers	Reject	Mark
5 (e)	Kr and Rb Any two from: The electron (in Rb) (removed) is further from the nucleus (1) The electron is in a higher / new / another / 5s (energy quantum) shell /		2
	energy level (1)		
	More shielded (1) IGNORE any reference to stability of krypton or larger atomic radius of Rb / full outer shell of Kr		
	It is possible that two answers may be offered together in one sentence e.g. Rb outer electron is in another shell further from nucleus (2)		

Question Number	Acceptable Answers	Reject	Mark
5 (f)	Krypton / Kr	Anything else	1

Total for Question = 13 Marks

