Transition Metals and Chemistry - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Marks
(a)		Look at the equation in the question for the correct oxidation number changes if not given on the answer lines	2
		Award maximum of one mark if the terms oxidised and reduced are not used or used the wrong way round	

Question number	Answer		Additional guidance	Mark
(b)	An answer which makes reference to the following points:		Accept the points in either order	2
	(precaution) carry out in a fume cupboard	(1)	Do not award 'well-ventilated laboratory/ face masks'	
	 (hazard) toxic nitrogen dioxide/NO₂ gas. 	(1)	Allow poisonous	

Question number	Answer		Additional guidance	Marks
(c)			Example of calculation:	6
	calculation of the number of moles of thiosulfate	(1)	$n(S_2O_3^{2-}) = (22.65 \times 0.100 \div 10000 =)$ = 2.265 × 10 ⁻³ /0.002265 (mol)	
	evaluation of the number of moles of iodine	(1)	$n(I_2) = (2.265 \times 10^{-3} \div 2=)$ = 1.1325 × 10 ⁻³ / 0.0011325 (mol)	
	evaluation of the number of moles of copper ions in the 10.0 cm³ aliquot	(1)	$n(Cu^{2+}) = (1.1325 \times 10^{-3} \times 2=)$ = 2.265 × 10 ⁻³ / 0.002265 (mol)	
	evaluation of the number of moles of copper ions in 250 cm³	(1)	n(Cu ²⁺) = (2.265 × 10 ⁻³ × 25) = 5.6625 × 10 ⁻² / 0.056625 (mol)	
	evaluation of mass of copper ions in sample	(1)	m(Cu ²⁺) = (5.6625 × 10 ⁻² × 63.5=) = 3.5956875 (g)	
	evaluation of percentage of copper in sample to 2/3 SF	(1)	% = (3.5956875 ÷ 5.0000 × 100= 71.91375=)	
			= 72/71.9 %	
			Penalise inappropriate rounding once only	
			Correct answer with no working scores 6 marks	

Question number	Answer		Additional guidance	Marks
(d)	An answer that makes reference to the following points: • colours of the precipitates formed	(1)	Blue precipitate with copper(II) ions and white precipitate with zinc ions	6
	addition of excess sodium hydroxide has no effect on copper precipitate	(1)		
	but the zinc precipitate dissolves to form colourless solution	(1)	Do not award 'clear'	
	equation for the formation of a precipitate for either copper(II) or zinc ions	(1)	Example of equations: $ [Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow \\ Cu(H_2O)_4OH)_2(s) \\ + 2H_2O(l) \\ or \\ [Zn(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Zn(OH)_2(s) \\ + 6H_2O(l) $	
	equation for the dissolving of the zinc precipitate	(1)	or $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ or $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$	
	all state symbols correct.	(1)	$Zn(OH)_2(s)+2OH^-(aq)\rightarrow [Zn(OH)_4]^{2-}(aq)$	

Question number	Answer	Additional guidance	Marks
(e)	An explanation that makes reference to:		2
	 copper forms an ion with an incomplete d subshell 		
	 but the only ion that zinc forms has a completely filled d subshell. 		

Question number	Answer		Additional guidance	Marks
(f)	A explanation that makes reference to:			2
	the atoms/cations are of different size (in brass)	(1)	Ignore movement of the electrons	
	therefore the layers do not slide over one another so easily.	(1)	Accept a labelled diagram	

Q2.

Question number	Answer	Mark
	B ethanoate ion, CH₃COO⁻	1

Q3.

Question number	Answer	Mark
	[MnO ₄] Time	1

Q4.

	Question number	Answer	Mark
ľ	(a)	C [Pt(NH ₃) ₂ Cl ₂]	1

Question number	Answer	Mark
(b)	A [CuCl ₂]	1

Question number	Answer	Mark
(c)	D $[Cr(H_2O)_6]^{2+}$	1

Q5.

Question number	Answer	Mark
(a)	C this label indicates the intermediate species	1

Question number	Answer	Mark
(b)	B they can gain and then lose electrons	1

Q6.

Question number	Answer	Mark
	C sodium hydroxide	1

Q7.

Question number	Answer	Mark
	B VO ₂ ⁺	1