Organic Synthesis - Mark Scheme ## Q1. | Question number | Answer | Mark | |-----------------|---|------| | | D it avoids the decomposition of the organic molecule when it distils | 1 | ## Q2. | Question number | Answer | | Additional guidance | Marks | |-----------------|---|-----|--|-------| | (a) | An answer that makes reference to the following points: | (1) | | 8 | | | react iodoethane with aqueous
hydroxide ions | | Accept aqueous sodium
hydroxide/
potassium hydroxide | | | | $ \bullet C_2H_5I + OH^- \longrightarrow C_2H_5OH + I^- $ | (1) | $C_2H_5I + NaOH \rightarrow C_2H_5OH + NaI$ | | | | oxidation of C₂H₅OH with acidified
dichromate(VI) under distillation
conditions | (1) | Accept reference to sodium/
potassium dichromate(VI) | | | | • $C_2H_5OH + [O] \rightarrow CH_3CHO + H_2O$ | (1) | | | | | react iodoethane with magnesium (in
ethoxyethane) | (1) | | | | | $\bullet C_2H_5I + Mg \to C_2H_5MgI$ | (1) | | | | | reaction of ethylmagnesium iodide
with ethanal to form butan-2-ol | (1) | | | | | • $C_2H_5MgI + CH_3CHO + H_2O$
$\rightarrow C_2H_5CH(OH)CH_3 + Mg(OH)I$ | (1) | Allow this to be shown as two separate equations | | | Question
number | A | nswer | | Additional guidance | Marks | |--------------------|---|---|-----|---|-------| | (b)(i) | | | | Example of calculation: | 4 | | | • | calculation of number of moles of butan-2-ol | (1) | n=(1.850 ÷ 74 =) 0.025 (mol) | | | | • | calculation of number of moles of
carbon dioxide
and
water | (1) | $n(CO_2) = 4 \times 0.025 = 0.100$
(mol)
and
$n(H_2O) = 5 \times 0.025 = 0.125$
(mol) | | | | • | calculation of carbon dioxide
mass/mass increase of solid X | (1) | $m(CO_2) = 0.100 \times 44 = 4.40 (g)$ | | | | • | calculation of mass of water/mass increase of solid Y | (1) | $m(H_2O) = 0.125 \times 18 = 2.25$ (g) | | | Question
number | Answer | Additional guidance | Marks | |--------------------|---|---|-------| | (b)(ii) | Prediction: • suitable example by name or formula. Reason: • the same molecular formula as butan-2-ol / is an isomer of butan-2-ol. |
Allow structural /displayed / skeletal formula. Any molecule with the molecular formula C ₄ H ₁₀ O Do not award just 'C ₄ H ₁₀ O' | 2 | ## Q3. | Question
number | Answer | Mark | |--------------------|--------|------| | | A 3 | 1 |