Organic Synthesis - Mark Scheme

Q1.

Question number	Answer	Mark
	D it avoids the decomposition of the organic molecule when it distils	1

Q2.

Question number	Answer		Additional guidance	Marks
(a)	An answer that makes reference to the following points:	(1)		8
	 react iodoethane with aqueous hydroxide ions 		Accept aqueous sodium hydroxide/ potassium hydroxide	
	$ \bullet C_2H_5I + OH^- \longrightarrow C_2H_5OH + I^- $	(1)	$C_2H_5I + NaOH \rightarrow C_2H_5OH + NaI$	
	 oxidation of C₂H₅OH with acidified dichromate(VI) under distillation conditions 	(1)	Accept reference to sodium/ potassium dichromate(VI)	
	• $C_2H_5OH + [O] \rightarrow CH_3CHO + H_2O$	(1)		
	 react iodoethane with magnesium (in ethoxyethane) 	(1)		
	$\bullet C_2H_5I + Mg \to C_2H_5MgI$	(1)		
	 reaction of ethylmagnesium iodide with ethanal to form butan-2-ol 	(1)		
	• $C_2H_5MgI + CH_3CHO + H_2O$ $\rightarrow C_2H_5CH(OH)CH_3 + Mg(OH)I$	(1)	Allow this to be shown as two separate equations	

Question number	A	nswer		Additional guidance	Marks
(b)(i)				Example of calculation:	4
	•	calculation of number of moles of butan-2-ol	(1)	n=(1.850 ÷ 74 =) 0.025 (mol)	
	•	calculation of number of moles of carbon dioxide and water	(1)	$n(CO_2) = 4 \times 0.025 = 0.100$ (mol) and $n(H_2O) = 5 \times 0.025 = 0.125$ (mol)	
	•	calculation of carbon dioxide mass/mass increase of solid X	(1)	$m(CO_2) = 0.100 \times 44 = 4.40 (g)$	
	•	calculation of mass of water/mass increase of solid Y	(1)	$m(H_2O) = 0.125 \times 18 = 2.25$ (g)	

Question number	Answer	Additional guidance	Marks
(b)(ii)	Prediction: • suitable example by name or formula. Reason: • the same molecular formula as butan-2-ol / is an isomer of butan-2-ol.	 Allow structural /displayed / skeletal formula. Any molecule with the molecular formula C ₄ H ₁₀ O Do not award just 'C ₄ H ₁₀ O'	2

Q3.

Question number	Answer	Mark
	A 3	1