Organic Nitrogen Compounds - Questions by Topic

Q1.

Identify the correct trend of **increasing** strength as a base.

(1)

- \square **A** $C_6H_5-NH_2 < H-NH_2 < CH_3-NH_2$
- \square **B** $C_6H_5-NH_2 < CH_3-NH_2 < H-NH_2$
- \square **C** H-NH₂ < CH₃-NH₂ < C₆H₅-NH₂
- \blacksquare **D** H-NH₂ < C₆H₅-NH₂ < CH₃-NH₂

(Total for question = 1 mark)

Q2.

Azo dyes are made from the benzenediazonium ion.

$$\langle \bigcirc \rangle - N_2^*$$

(a) Benzenediazonium ions can be made from:

(1)

	Reagent 1	Reagent 2
□ A	HNO ₂	NH ₂
□B	HNO ₂	NO ₂
□ c	HNO ₃	NH ₂
□ D	HNO₃	NO ₂

(b) The structure of the azo dye formed when benzenediazonium ions react with phenol is

(1)

HO NH₂

(Total for question = 2 marks)

Q3.

Glycine and lysine are two naturally-occurring amino acids.

(a) Write the equation for the reaction of glycine with sodium hydroxide.

State symbols are not required.

(1)

(b) Calculate the volume, in cm^3 , of 0.100 mol dm^{-3} hydrochloric acid required to completely react with 1.825 g of lysine.

 $[M_r \text{ of lysine} = 146]$

(2)

(c)	(c) Lysine exists as optically active enantiomers but g	llycine does not.
(i)	(i) Draw three-dimensional diagrams of the two optical	ally active lysine enantiomers.
(ii)	(ii) Describe how these optically active enantiomers of	(2)
		odia be distiliguismed.
Pra	Practical details are not required.	
		(2)
(iii)	(iii) State why glycine does not exist as enantiomers.	
		(1)
(d)	(d) Chromatography can be used to separate a mixtu	re of alvcine and lysine.
	Draw spots to show the location of glycine and lysine	
	values are 0.26 and 0.14 respectively.	on the emomatogram, given that then 14
		(1)
	solv	ent front
	orig	in

(e) Naturally-occurring glycine and lysine can join together to form different dipeptides.

Draw a different dipeptide of glycine and lysine.

(1)

Dipeptide 1	Dipeptide 2
H O H H ₂ N-C-C-N-C-COOH H H (CH ₂) ₄ NH ₂	

(Total for question = 10 marks)

Q4.

Which combination of reactants will produce a primary aliphatic amine as the product?

CH₂

Q5.

Which equation shows the two compounds that react to produce ethanamide, CH_3CONH_2 , in a single step?

(1)

- **B** $CH_3COOH + NH_3 \rightarrow CH_3CONH_2 + H_2O$
- **D** $CH_3CHO + NH_3 \rightarrow CH_3CONH_2 + H_2$

(Total for question = 1 mark)