Lattice Energy - Questions by Topic

Q1.

Barium oxide is an ionic compound that reacts with water to form barium hydroxide.

(a) A Born-Haber cycle for barium oxide, BaO, is shown.

Some of the detail is missing. The letters **R**, **W** and **Z** represent some missing information.

(i) Identify the missing detail represented by the following letters.

									(2
R	 									
w	 									

(ii) Use the following data to calculate a value for the quantity ΔZ shown on the Born-Haber cycle.

Include a sign and units in your answer.

(3)

Energy quantity	Enthalpy change / kJ mol ⁻¹
Enthalpy change of atomisation of barium, $\Delta_{at}H(Ba(s))$	+180.0
Enthalpy change of atomisation of oxygen, $\Delta_{at}H$ (½ $O_2(g)$)	+249.2
First ionisation energy of barium, lst IE (Ba(g))	+503.0
Second ionisation energy of barium, 2nd IE (Ba(g))	+965.0
ΔW	-141.1
Second electron affinity of oxygen, 2nd EA (O ⁻ (g))	+798.0
Lattice energy barium oxide, $\Delta_{LE}H(BaO(s))$	-3054.0

(iii) The table gives some information about the lattice energies of barium oxide and magnesium iodide and shows the % difference between the theoretical and experimental values.

	Lattice energy / kJ mol ⁻¹						
	Experimental	Theoretical	% difference				
BaO(s)	-3054	-3029	0.8				
MgI ₂ (s)	-2327	-1944	16.5				

Explain why there is closer agreement for barium oxide than for magnesium iodide.

(3)

(b) The table gives some information about Group 2 ions, M²⁺, and their hydroxides.

Formula of hydroxide	Lattice energy / kJ mol ⁻¹	Δ _{sol} H / kJ mol ⁻¹	Solubility / mol per 100 g	lon	Δ _{hyd} HN ²⁺ / kJ mol ⁻¹
Mg(OH) ₂	-3000	+150	2.0×10^{-5}	Mg ²⁺	-1930
Ca(OH) ₂	-2640	+140	1.6 × 10 ⁻⁴	Ca ²⁺	-1580
Sr(OH) ₂	-2475	+105	3.3 × 10 ⁻⁴	Sr ²⁺	-1450
Ba(OH) ₂	-2230		2.4 × 10 ⁻⁴	Ba ²⁺	-1360

(i) Calculate the enthalpy change of solution, $\Delta_{sol}H$, of Ba(OH)₂ using a fully-labelled Hess's cycle.

[The hydration enthalpy of the hydroxide ion, $OH^- = -460 \text{ kJ mol}^{-1}$.]

(4)

(ii) Explain why strontium hydroxide is slightly soluble in water, even though the enthalpy change of solution is endothermic.

(2)

(Total for question = 14 marks)