Lattice Energy - Mark Scheme ## Q1. | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------| | (a)(i) | • $R = O^{2-}(g)$ (1) | | 2 | | | • W = first electron affinity O(g) (1) | Allow alternative ways to express electron affinity, e.g. EA State required Do not allow O ₂ /O | | | Question
number | Answer | | Additional guidance | Mark | |--------------------|--------|----------------------------------|---|------| | (a)(ii) | | correct application of cycle (1) | I^{st} IE (Ba)(g)
+2 nd IE (Ba(g))+2 nd EA (O(g))+1 st EA (O(g))
+ $\Delta_{LE}H$ (BaO(s)) | 3 | | | | | or
Correct numbers
= 180.0+249.2+503+965+798-141.1-3054 | | | | • | correct value (1) | (-)499.9/(-)500 (kJ mol ⁻¹) | | | | • | correct sign and units (1) | Allow TE from incorrect application of cycle
Allow TE for incorrect numbers | | | | | | Correct answer with no working scores 3 | | | Question
number | Ar | nswer | | Additional guidance | Mark | |--------------------|----|---|-----|------------------------|------| | (a)(iii) | • | ionic radius of Ba ²⁺ >> ionic radius of Mg ²⁺ /(have) lower charge density and Ba ²⁺ (ions are) less polarising/(have) lower charge density | (1) | Allow reverse argument | 3 | | | • | iodide ions/I ⁻ are large
and their electron clouds are easily
distorted/polarised (by Group 2
cations)
or
oxide ions/O ²⁻ are small(er)
and their electron clouds are less easily
distorted/polarised | (1) | | | | | • | more distortion/covalency leads to
greater difference between theoretical
and experimental values | | | | | Question number | Answer | | Additional guidance | Mark | |-----------------|---|-----|---|------| | (b)(i) | $\begin{array}{c} \text{Ba(OH)}_{2 \text{ (s)}} & \xrightarrow{\Delta H_{\text{solution}}} & \text{Ba}^{2+} \text{ (aq)} + 2 \text{OH} \text{ (sq)} \\ \\ \Delta_{\text{LE}} H_{\text{Ba(OH)}_2} & & \\ & D_{\text{N/G}} H \text{ (Ba}^{2+}) + 2 \times \Delta_{\text{N/G}} H \text{ (OH}^{-}) \end{array}$ | | Do not allow energy profile or energy level diagrams | 4 | | | all arrows in the correct direction | (1) | Species at each corner must be approximately correct | | | | correct formulae at each corner and
enthalpies of hydration, and solution
and LE correctly identified | (1) | Allow missing minor detail:
brackets, position of subscripts,
etc. but not absence of
subscripts | | | | correct expression or correct
substitution of values | (1) | Example of calculation:
$\Delta_{sol}H = (\Delta_{hyd}H (Ba^{2+}) + 2\Delta_{hyd}H(OH^{-}))$ -
LE (Ba(OH) ₂)
or
= (-1360 +(2 × -460)) - (-2230) | | | | correct evaluation | (1) | = -50 (kJ mol ⁻¹) Allow TE from their cycle if Δ _{hyd} H(OH ⁻) is not doubled | | | Question
number | Ar | nswer | | Additional guidance | Mark | |--------------------|----|---|-----|-------------------------|------| | b(ii) | • | entropy (change) of system/ $\Delta S_{\text{system}}/\Delta S_{\text{dissolving}}$ is large and positive (and outweighs negative | (1) | | 2 | | | | $\Delta S_{\text{surroundings}}$ (- $\Delta H/T$)) | (1) | | | | | • | overall entropy change/ ΔS_{total} is positive | | | | | | | or | | | | | | • | use of $\Delta S_{\text{total}} = \Delta S_{\text{surroundings}} + \Delta S_{\text{system}}$ | (1) | | | | | • | $\Delta S_{\text{total}} = \Delta S_{\text{surroundings}} + (-\Delta H/T)$ | (1) | Allow use of ΔG | |