Lattice Energy - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)(i)	• $R = O^{2-}(g)$ (1)		2
	• W = first electron affinity O(g) (1)	Allow alternative ways to express electron affinity, e.g. EA State required Do not allow O ₂ /O	

Question number	Answer		Additional guidance	Mark
(a)(ii)		correct application of cycle (1)	I^{st} IE (Ba)(g) +2 nd IE (Ba(g))+2 nd EA (O(g))+1 st EA (O(g)) + $\Delta_{LE}H$ (BaO(s))	3
			or Correct numbers = 180.0+249.2+503+965+798-141.1-3054	
	•	correct value (1)	(-)499.9/(-)500 (kJ mol ⁻¹)	
	•	correct sign and units (1)	Allow TE from incorrect application of cycle Allow TE for incorrect numbers	
			Correct answer with no working scores 3	

Question number	Ar	nswer		Additional guidance	Mark
(a)(iii)	•	ionic radius of Ba ²⁺ >> ionic radius of Mg ²⁺ /(have) lower charge density and Ba ²⁺ (ions are) less polarising/(have) lower charge density	(1)	Allow reverse argument	3
	•	iodide ions/I ⁻ are large and their electron clouds are easily distorted/polarised (by Group 2 cations) or oxide ions/O ²⁻ are small(er) and their electron clouds are less easily distorted/polarised	(1)		
	•	more distortion/covalency leads to greater difference between theoretical and experimental values			

Question number	Answer		Additional guidance	Mark
(b)(i)	$\begin{array}{c} \text{Ba(OH)}_{2 \text{ (s)}} & \xrightarrow{\Delta H_{\text{solution}}} & \text{Ba}^{2+} \text{ (aq)} + 2 \text{OH} \text{ (sq)} \\ \\ \Delta_{\text{LE}} H_{\text{Ba(OH)}_2} & & \\ & D_{\text{N/G}} H \text{ (Ba}^{2+}) + 2 \times \Delta_{\text{N/G}} H \text{ (OH}^{-}) \end{array}$		Do not allow energy profile or energy level diagrams	4
	all arrows in the correct direction	(1)	Species at each corner must be approximately correct	
	correct formulae at each corner and enthalpies of hydration, and solution and LE correctly identified	(1)	Allow missing minor detail: brackets, position of subscripts, etc. but not absence of subscripts	
	correct expression or correct substitution of values	(1)	Example of calculation: $\Delta_{sol}H = (\Delta_{hyd}H (Ba^{2+}) + 2\Delta_{hyd}H(OH^{-}))$ - LE (Ba(OH) ₂) or = (-1360 +(2 × -460)) - (-2230)	
	correct evaluation	(1)	= -50 (kJ mol ⁻¹) Allow TE from their cycle if Δ _{hyd} H(OH ⁻) is not doubled	

Question number	Ar	nswer		Additional guidance	Mark
b(ii)	•	entropy (change) of system/ $\Delta S_{\text{system}}/\Delta S_{\text{dissolving}}$ is large and positive (and outweighs negative	(1)		2
		$\Delta S_{\text{surroundings}}$ (- $\Delta H/T$))	(1)		
	•	overall entropy change/ ΔS_{total} is positive			
		or			
	•	use of $\Delta S_{\text{total}} = \Delta S_{\text{surroundings}} + \Delta S_{\text{system}}$	(1)		
	•	$\Delta S_{\text{total}} = \Delta S_{\text{surroundings}} + (-\Delta H/T)$	(1)	Allow use of ΔG	