Q1.

Question number	Answer	Additional guidance	Mark
(a)	 2H₂O₂ → 2H₂O + O₂ (1 iodide ions act as a catalyst (as they don't appear in the overall equation)) Ignore state symbols) even if incorrect	2

Question number	Answer	Additional guidance Ma	ırk
(b)	converts both temperatures from °C to K	Example of calculation: 4 (1) 22.0°C = 295.0 K 47.0°C = 320.0 K	4
	correct subtraction ($\ln\left(\frac{K_1}{K_2}\right) = -\frac{\mathcal{E}_s}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	
	substitute numbers in equation correctly	$\ln\left(\frac{4.90\times10^{-4}}{1.07\times10^{-3}}\right) = -\frac{\varepsilon_a}{8.31}\left(\frac{1}{295} - \frac{1}{320}\right)$	
	• correct value of $E_{\rm a}$ ((1) (+)56.(0) (kJ mol ⁻¹) Sign and final answer to 2 or 3 SF Incorrect units loses MP4 Correct answer with no	
Question number	Answer	working scores 4 Additional guidance Ma	rk
(c)(i)	(blue-black colour is) product of starch-iodine reaction	3 (1)	3
	when all of the thiosulfate has reacted, the blue-black colour appears.	1)	

Question number	Answer	Additional guidance	Mark
(c)(ii)	the reaction (between thiosulfate and hydrogen peroxide) is slow	Allow reaction has high E _a	1

Q**2**.

Question number	Answer	Mark
	A ethane(g)	1

Question number	Answer	Additional guidance	Mark
(a)		Example of calculation:	2
	• use of $\Delta S_{\text{system}} = \Delta S_{\text{products}} - \Delta S_{\text{reactants}}$ (1)	$\Delta S_{\text{system}} = (2 \times 240.0) - 304.2$	
	• correct value with sign and units (1)	= +175.8 J K ⁻¹ mol ⁻¹	
		Correct answer with no working scores 2 Allow 3 SF	

Question number	Aı	nswer		Additional guidance	Mark
(b)		•		Example of calculation:	2
	•	use of $\Delta_r H = 2 \times \Delta_t H(NO_2) - \Delta_t H(N_2O_4)$ (1))	$\Delta_r H = (2 \times 33.2) - \Delta_f H(N_2 O_4) = 57.2$	
	•	correct value with sign and units (1))	$\Delta_1 H(N_2O_4) = +9.2 \text{ kJ mol}^{-1}$	
				Correct answer with no working scores 2	

Question number	Ar	nswer		Additional guidance	Mark
(c)				Example of calculation:	3
	•	use of $\Delta S_{\text{surroundings}} = -\Delta H/T$	(1)	-(57.2 × 1000/298)	
	•	correct value	(1)	= (-)191.(946)	
	•	answer to 3 SF with correct sign and correct units	(1)	-192 J K ⁻¹ mol ⁻¹	
				Allow -0.192 kJ K ⁻¹ mol ⁻¹ for M2 and M3	
				Correct answer to 3 SF with no working	
				scores 3	

Question number	Answer	Additional guidance	Mark
(d)(i)	• $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$	Allow TE from 23a and 23c	1
	• $\Delta S_{\text{total}} = +175.8 + (-191.9) = -16(.1) (J \text{ mol}^{-1} \text{ K}^{-1})$	Allow answers in kJ mol ⁻¹ K ⁻¹	

Question number	Answer	Additional guidance	Mark
(d)(ii)		Example of expression and calculation:	2
	• correct expression (1)	$\Delta H = T\Delta S_{\text{system}}$ or $T = \Delta H/\Delta S_{\text{system}}$ or $\Delta S_{\text{system}} = \Delta H/T$ or $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = 0$	
	• correct evaluation (1)	T = 57.2 × 1000/175.8 = 325.37 = 325 K/52 °C	

Question number	Answer		Additional guidance	Mark
(e)(i)	correct expression for K _p	(1)	$K_p = (p_{NO_2})^2/p_{N_2O_4}$ Do not award any square brackets	2
	units of pressure	(1)	atm	

Question number	Ar	nswer		Additional guidance	Mark
(e)(ii)	•	moles of N ₂ O ₄ and NO ₂ at eqm	(1)	Example of calculation: $(\text{mol})\text{N}_2\text{O}_4 = 7.3$, $(\text{mol})\text{NO}_2 = 5.4$.	4
	•	total number of moles and mole fractions calculated	(1)	Total moles = 12.7 Mole fraction N_2O_4 = 0.575 Mole fraction NO_2 = 0.425 Allow TE from M1	
	•	converted to partial pressure	(1)	$P N_2O_4 = 2.30$ (answers to M2 × 4) $NO_2 = 1.70$ Allow TE from M2	
	•	calculation of $K_{\rm p}$	(1)	K _p = 1.26 (atm) Allow TE from M3 Ignore SF except 1 SF	

Question number	Answer	Additional guidance	Mark
(e)(iii)	 no effect on (the value of) K_p 		1

Question number	Ar	nswer		Additional guidance	Mark
(e)(iv)	•	double pressure (effect of squaring) (1 increases numerator more than denominator	()		3
	•	(but K_p must remain constant (therefore) mole fraction of N_2O_4 must increase (relative to mole fraction of NO_2)	1)		
	•	(therefore) % dissociation of $\rm N_2O_4$ decreases	1)		

Q**4.**

Question number	Answer	Mark
	D monoclinic sulfur could change into rhombic sulfur but nothing can be	1
	deduced about the rate	