Chemical Equilibria - Mark Scheme

Q1.

Question number	Answer	Mark
(a)	C increase the temperature	1

- 1	Question number	Answer	Mark
	(b)	A [CO ₂]	1

Q2.

Question number	Answer	Mark
(a)		1
	$K_c = \frac{[I_2(aq)]}{[I_2(trichloromethane)]}$	

Question number	Answer	Mark
(b)	C iodine molecules move from the water to the trichloromethane and from the	1
	trichloromethane to the water layer	

Q3.

Question number	Answer	Additional guidance	Mark
(a)		Example of calculation:	2
	• use of $\Delta S_{\text{system}} = \Delta S_{\text{products}} - \Delta S_{\text{reactants}}$ (1)	$\Delta S_{\text{system}} = (2 \times 240.0) - 304.2$	
	correct value with sign and units (1)	= +175.8 J K ⁻¹ mol ⁻¹	
		Correct answer with no working scores 2 Allow 3 SF	

Question number	Answer	Additional guidance	Mark
(b)		Example of calculation:	2
	• use of $\Delta_r H = 2 \times \Delta_f H(NO_2) - \Delta_f H(N_2O_4)$ (1)	$\Delta_r H = (2 \times 33.2) - \Delta_f H(N_2 O_4) = 57.2$	
	correct value with sign and units (1)	$\Delta_{\rm f} H({\rm N_2O_4}) = +9.2 \text{ kJ mol}^{-1}$	
		Correct answer with no working scores 2	

Question number	Answer		Additional guidance	Mark
(c)		•	Example of calculation:	3
	• use of $\Delta S_{\text{surroundings}} = -\Delta H/T$	(1)	-(57.2 × 1000/298)	
	correct value	(1)	= (-)191.(946)	
	answer to 3 SF with correct sign and correct units	(1)	-192 J K ⁻¹ mol ⁻¹	
			Allow -0.192 kJ K ⁻¹ mol ⁻¹ for M2 and M3	
			Correct answer to 3 SF with no	
			working	
			scores 3	

Question number	Answer	Additional guidance	Mark
(d)(i)	• $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$	Allow TE from 23a and 23c	1
	• $\Delta S_{\text{total}} = +175.8 + (-191.9) = -16(.1) \text{ (J mol}^{-1} \text{ K}^{-1})$	Allow answers in kJ mol ⁻¹ K ⁻¹	

Question number	Answer	Additional guidance	Mark
(d)(ii)	correct expression (1)	Example of expression and calculation: $ \Delta H = T \Delta S_{\text{system}} $ or $T = \Delta H / \Delta S_{\text{system}} $ or $\Delta S_{\text{system}} = \Delta H / T $ or $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = 0 $	2
	correct evaluation (1)	T = 57.2 × 1000/175.8 = 325.37 = 325 K/52 °C	

Question number	Answer		Additional guidance	Mark
(e)(i)	• correct expression for K_p (1)	$K_p = (p_{NO_2})^2/p_{N_2O_4}$ Do not award any square brackets	2
	units of pressure	1)	atm	

Question number	Ar	nswer		Additional guidance	Mark
(e)(ii)	•	moles of N ₂ O ₄ and NO ₂ at eqm	(1)	Example of calculation: $(mol)Nl_2O_4 = 7.3$, $(mol)NO_2 = 5.4$.	4
	•	total number of moles and mole fractions calculated	(1)	Total moles = 12.7 Mole fraction N_2O_4 = 0.575 Mole fraction NO_2 = 0.425 Allow TE from M1	
	•	converted to partial pressure	(1)	P N_2O_4 = 2.30 (answers to M2 × 4) NO_2 = 1.70 Allow TE from M2	
	•	calculation of $K_{\rm p}$	(1)	K _p = 1.26 (atm) Allow TE from M3 Ignore SF except 1 SF	

Question number	Answer	Additional guidance	Mark
(e)(iii)	 no effect on (the value of) K_p 		1

Question number	Ar	nswer		Additional guidance	Mark
(e)(iv)	•	double pressure (effect of squaring) increases numerator more than denominator	(1)		3
	•	(but K_p must remain constant therefore) mole fraction of N_2O_4 must increase (relative to mole fraction of NO_2)	(1)		
	•	(therefore) % dissociation of N ₂ O ₄ decreases	(1)		