Acid-Base Equilibria - Questions by Topic Q1. This question is about acids. - (a) Calculate the pH of the following acidic solutions. Give your answers to **two** decimal places. - (i) 0.14 mol dm⁻³ solution of hydrochloric acid (1) (ii) 0.14 mol dm⁻³ solution of ethanoic acid ($K_a = 1.76 \times 10^{-5} \text{ mol dm}^{-3}$) (3) (b) The graph shows the titration curve for a weak acid with a strong base. The equivalence point is A and the volume of alkali added at the equivalence point is C. Volume B is half of volume C. Volume of sodium hydroxide solution added (i) Use the graph to determine the dissociation constant, K_a , of the weak acid. (3) (ii) Explain the rapid rise in pH from 2.8 to 4 at the start of the titration. (2) | •••• | | | | |-----------|--------------|---|-----| (c)
mc | In a
I dm | another experiment, 10 cm ³ of 1.0 mol dm ⁻³ sodium hydroxide was added to 30 cm ³ 1.0 n ⁻³ propanoic acid ($K_a = 1.3 \times 10^{-5}$ mol dm ⁻³). |) | | (i) | Cald | culate the pH of the resulting solution. | | | | | | (3) | | (ii) | Sta | ate one assumption you have made in this calculation. | | | | | | (1) | | | | | | | | | | | | •••• | | | | | | | | | | | | | | | | | (Total for question = 13 mark | (s) | | | | | | | Q2 | | | | | Wł | nich | indicator should be used to determine the end point in a titration of a strong acid with | a | | | | pase? | | | | | | (1) | | Š | A | universal indicator | | | 1 | В | methyl orange | | |) j | С | phenolphthalein | | | Š | D | litmus | | | | | | | | | | (Total for question = 1 mar | rk) | | | | (1910) 101 41001311 2 1100 | -, | Q3. The equation for the dissociation of water is: $$H_2O(l) \implies H^+(aq) + OH^-(aq)$$ The ionic product of water, $K_{\rm w}$, varies with temperature. | Temperature/°C | K _w /mol ² dm ⁻⁶ | |----------------|---| | 25 | 1.01×10^{-14} | | 30 | 1.47×10^{-14} | | 50 | 5.48 × 10 ⁻¹⁴ | | 100 | 7.16×10^{-14} | What is the pH of pure water at 60 °C? (1) - □ A approximately 6.5 - B exactly 7 - **C** approximately 7.4 - **D** greater than 7.4 (Total for question = 1 mark)