Mass Spectra and IR - Mark Scheme ## Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (a)(i) | peak in the range 3750 - 3200 cm⁻¹ and
O-H (stretching) bond in alcohols | Must identify the bond and give the wavenumber range | 1 | | | | Allow peak at ~3375 cm ⁻¹ | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--------------------------------|------| | (a)(ii) | not possible - All three contain the same
bonds
or
possible - the fingerprint regions differ/by
comparing the spectra to reference spectra | No mark for unjustified answer | 1 | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (b)(i) | (all show) parent/molecular ion peak at 74 | Allow peak furthest to the
right/highest m/z peak at 74
Do not award just 'peak at 74' | 1 | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|------------------------------------|------| | (b)(ii) | • fragment ⁺ CH ₃ CHOH = 45 (1) | | 3 | | | • fragment +CH ₂ OH = 31 (1) | | | | | • fragment $^+(CH_3)_2COH = 59$ (1) | Ignore missing charge on fragments | | | Question
number | Answer | | | Additional guidance | Mark | | |--------------------|-----------------------------|---------------------------|---|---------------------|---|---| | (c)(i) | Organic
compound
used | Name of oxidation product | Structural
formula of
oxidation product | | Allow displayed or
skeletal formulae
1 mark for 2 correct
names and 1 mark for | 3 | | | A | Butanone
and | CH ₃ CH ₂ COCH ₃ | (1) | each correct formula | | | | В | Butanal (1) | CH ₃ CH ₂ CH ₂ CHO | (1) | | | | Question number | Answer | | Additional guidance | Mark | |-----------------|--|-----|---|------| | (c)(ii) | An answer that makes reference to the following points: • reagent: Benedict's/Fehling's | (1) | Allow Tollens'
or
iodine + alkali | 3 | | | (oxidation product of) compound A: no change | (1) | | | | | (oxidation product of) compound B: (Benedict's/Fehlings test) red precipitate. | (1) | (Tollens' reagent) silver mirror
with (oxidation product of) B.
No reaction with (oxidation
product of) A | | | | | | (iodine + alkali) yellow
precipitate (iodoform) with
(oxidation product of) A. No
reaction with oxidation product
of B | | | | | | If (butanoic) acid in (c)(i), allow reagent: sodium carbonate/sodium hydrogencarbonate (solution) Observations: (oxidation product of) compound B: bubbles/fizzes | |