Halogenoalkanes - Mark Scheme # Q1. | Question
number | Answer | Mark | |--------------------|----------------------------|------| | | C 2-chloro-2-methylpropane | 1 | ## Q2. | Question
number | Answer | Additional guidance | Mark | |--------------------|--------------------------|--|------| | (a) | • balanced equation (1) | $I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$ | 2 | | | • all states correct (1) | Accept multiples | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------|--------------------------------------|------| | (b) | | Cl = 3.0 and I = 2.5
δ+ I — Cl δ- | 1 | | | | Do not award full charges | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------------------------------|--|------| | (c)(i) | 1 mark each
correct formula | Allow 1 mark for 2 correct non-skeletal formulae | 2 | | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|-----|------------------------|------| | (c)(ii) | An explantion that makes reference to the following points: | | | 3 | | | identification of correct isomer | (1) | 2-chloro-1-iodopropane | | | | • iodine is $\delta +$ and is attacked by the π electrons | (1) | | | | | more stable secondary carbocation formed. | (1) | | | | Question
number | Answer | | Additional guidance | Mar
k | |--------------------|---|-----|--|----------| | (d)(i) | An answer that makes reference to the following points: | • | | 2 | | | carry out in fume cupboard | (1) | Allow fume hood or similar description | | | | chlorine is toxic. | (1) | Do not allow 'harmful' | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--------------------------|------| | (d)(ii) | • I in ICl = +1
I in ICl ₃ = +3 | Both needed for the mark | 1 | | Question
number | | | Additional guidance | Mark | | |--------------------|---|--|---------------------|------|---| | (d)(iii) | • | +5 and -1 to -1 (and -1) | (1) | | 2 | | | • | not disproportionation because
the chlorine has not undergone
both oxidation and reduction | (1) | | | | Question
number | Ar | nswer | Additional guidance | Mark | |--------------------|----|-----------------------|--|------| | (e)(i) | • | correct method (1) | Cl ₂ = 2 × 35.5 = 71
71 ÷ 24000 | 2 | | | • | answer with units (1) | = 0.0029583 g cm ⁻³
= 3 g dm ⁻³ | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---------------------|------| | (e)(ii) | An explanation that makes reference to the following points: | | 3 | | | chlorine (gas) is more dense
than air | (1) | | | | chlorine (gas) removed (from
the equilibrium) | (1) | | | | position of equilibrium moves
to the LHS (more brown
liquid/ICl). | (1) | | | Question number | Ar | nswer | | Additional guidance | Mark | |-----------------|----|---|-----|---|------| | (f) | • | calculation of mols of iodine and fluorine | (1) | Mols of iodine = 0.64 ÷ 126.9 = 5.04 × 10 ⁻³ Mols of fluorine = (1.31–0.64) ÷ 19 = 3.53 × 10 ⁻² | 2 | | | • | calculation of whole number ratio and formula | (1) | Ratio 1:7 therefore formula IF ₇ | | ## Q3. | Question
number | Answer | Mark | |--------------------|-----------------------------|------| | 1 | D nucleophilic substitution | 1 | ## Q4. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (a) | KBr/potassium bromide and (50%) (sulfuric acid | I) Both needed for M1 Ignore acid concentration Allow HBr (dry) PBr ₃ /Phosphorus(III) bromide PBr ₅ /Phosphorus(V) bromide | 2 | | | (heat under) reflux (| Do not allow just heat M2 conditional on correct or near correct M1 | | | Question
number | Answer | | Additional guidance | Mark | |--------------------|-------------------------------------|-----|---------------------|------| | (b) | C-Br dipole reversed | (1) | Allow in any order | 3 | | | OH ⁻ to C arrow reversed | (1) | | | | | lone pair missing (from OH-) | (1) | | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (c) | KOH/potassium hydroxide (1 ethanol(ic)/alcohol(ic) and heat (under reflux) |) Allow NaOH/sodium hydroxide
Ignore OH ⁻ / alkali
) M2 dependent on M1 | 2 | ## Q5. | Question
number | Answer | Mark | |--------------------|-------------------------------|------| | ! | D E-1-bromo-2-methylbut-1-ene | 1 |