Halogenoalkanes - Mark Scheme

Q1.

Question number	Answer	Mark
	C 2-chloro-2-methylpropane	1

Q2.

Question number	Answer	Additional guidance	Mark
(a)	• balanced equation (1)	$I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$	2
	• all states correct (1)	Accept multiples	

Question number	Answer	Additional guidance	Mark
(b)		Cl = 3.0 and I = 2.5 δ+ I — Cl δ-	1
		Do not award full charges	

Question number	Answer	Additional guidance	Mark
(c)(i)	1 mark each correct formula	Allow 1 mark for 2 correct non-skeletal formulae	2

Question number	Answer		Additional guidance	Mark
(c)(ii)	An explantion that makes reference to the following points:			3
	identification of correct isomer	(1)	2-chloro-1-iodopropane	
	• iodine is $\delta +$ and is attacked by the π electrons	(1)		
	 more stable secondary carbocation formed. 	(1)		

Question number	Answer		Additional guidance	Mar k
(d)(i)	An answer that makes reference to the following points:	•		2
	carry out in fume cupboard	(1)	Allow fume hood or similar description	
	chlorine is toxic.	(1)	Do not allow 'harmful'	

Question number	Answer	Additional guidance	Mark
(d)(ii)	• I in ICl = +1 I in ICl ₃ = +3	Both needed for the mark	1

Question number			Additional guidance	Mark	
(d)(iii)	•	+5 and -1 to -1 (and -1)	(1)		2
	•	not disproportionation because the chlorine has not undergone both oxidation and reduction	(1)		

Question number	Ar	nswer	Additional guidance	Mark
(e)(i)	•	correct method (1)	Cl ₂ = 2 × 35.5 = 71 71 ÷ 24000	2
	•	answer with units (1)	= 0.0029583 g cm ⁻³ = 3 g dm ⁻³	

Question number	Answer	Additional guidance	Mark
(e)(ii)	An explanation that makes reference to the following points:		3
	chlorine (gas) is more dense than air	(1)	
	chlorine (gas) removed (from the equilibrium)	(1)	
	 position of equilibrium moves to the LHS (more brown liquid/ICl). 	(1)	

Question number	Ar	nswer		Additional guidance	Mark
(f)	•	calculation of mols of iodine and fluorine	(1)	Mols of iodine = 0.64 ÷ 126.9 = 5.04 × 10 ⁻³ Mols of fluorine = (1.31–0.64) ÷ 19 = 3.53 × 10 ⁻²	2
	•	calculation of whole number ratio and formula	(1)	Ratio 1:7 therefore formula IF ₇	

Q3.

Question number	Answer	Mark
1	D nucleophilic substitution	1

Q4.

Question number	Answer	Additional guidance	Mark
(a)	KBr/potassium bromide and (50%) (sulfuric acid	I) Both needed for M1 Ignore acid concentration Allow HBr (dry) PBr ₃ /Phosphorus(III) bromide PBr ₅ /Phosphorus(V) bromide	2
	(heat under) reflux (Do not allow just heat M2 conditional on correct or near correct M1	

Question number	Answer		Additional guidance	Mark
(b)	C-Br dipole reversed	(1)	Allow in any order	3
	OH ⁻ to C arrow reversed	(1)		
	lone pair missing (from OH-)	(1)		

Question number	Answer	Additional guidance	Mark
(c)	KOH/potassium hydroxide (1 ethanol(ic)/alcohol(ic) and heat (under reflux)) Allow NaOH/sodium hydroxide Ignore OH ⁻ / alkali) M2 dependent on M1	2

Q5.

Question number	Answer	Mark
!	D E-1-bromo-2-methylbut-1-ene	1