Equilibria - Mark Scheme ## Q1. | Question
number | Answer | Mark | |--------------------|---|------| | | C the forward and reverse reactions have both stopped | 1 | ## Q2. | Question
number | Answer | | Additional guidance | Mark | |--------------------|--------------------|-----|--|------| | (a) | balanced equation | (1) | $I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$ | 2 | | | all states correct | (1) | Accept multiples | | | Question
number | Answer | Additional guidance | Mark | |--------------------|----------------------------------|---------------------------|------| | (b) | correct electronegativity values | Cl = 3.0 and I = 2.5 | 1 | | | and correct dipole diagram | δ+ I — Cl δ- | | | | | Do not award full charges | | | Question number | Answer | Additional guidance | Mark | |-----------------|--------------------------------|--|------| | (c)(i) | 1 mark each
correct formula | Allow 1 mark for 2 correct non-skeletal formulae | 2 | | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|-----|------------------------|------| | (c)(ii) | An explantion that makes reference to the following points: | | | ν. | | | identification of correct isomer | (1) | 2-chloro-1-iodopropane | | | | • iodine is $\delta +$ and is attacked by the π electrons | (1) | | | | | more stable secondary carbocation formed. | (1) | | | | Question
number | Answer | | Additional guidance | Mar
k | |--------------------|---|-----|--|----------| | (d)(i) | An answer that makes reference to the following points: | | | 2 | | | carry out in fume cupboard | (1) | Allow fume hood or similar description | | | | chlorine is toxic. | (1) | Do not allow 'harmful' | | | Question
number | Answer | Additional guidance | Mark | |--------------------|-----------------------------------|--------------------------|------| | (d)(ii) | • I in ICl = +1
I in ICl, = +3 | Both needed for the mark | 1 | | Question number | Answer | | Additional guidance | Mark | |-----------------|--|------------|---------------------|------| | (d)(iii) | +5 and -1 to -1 (and -1) not disproportionation because the chlorine has not undergone both oxidation and reduction | (1)
(1) | | 2 | | Question
number | Answer | Additional guidance | Mark | |--------------------|-------------------------|--|------| | (e)(i) | • correct method (1) | Cl ₂ = 2 × 35.5 = 71
71 ÷ 24000 | 2 | | | • answer with units (1) | = 0.0029583 g cm ⁻³
= 3 g dm ⁻³ | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|------| | (e)(ii) | An explanation that makes reference to the following points: | | 3 | | | chlorine (gas) is more dense
than air | (1) | | | | chlorine (gas) removed (from
the equilibrium) | (1) | | | | position of equilibrium moves
to the LHS (more brown
liquid/ICl). | (1) | | | Question number | Ar | nswer | | Additional guidance | Mark | |-----------------|----|---|-----|--|------| | (f) | • | calculation of mols of iodine
and fluorine | (1) | Mols of iodine = $0.64 \div 126.9 = 5.04 \times 10^{-3}$
Mols of fluorine = $(1.31-0.64) \div 19 = 3.53 \times 10^{-2}$ | 2 | | | • | calculation of whole number ratio and formula | (1) | Ratio 1:7 therefore formula IF ₇ | |