Ionic Bonding - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)	An explanation that makes reference to the following points: (I) is incorrect because the solutions are aqueous or ions are (in the) aqueous (state) the state symbols should be (aq) instead of (I)	Allow silver nitrate and sodium chloride are aqueous Do not award if incorrect state symbol for one of the species in the equation e.g. Ag is (s) / AgCl is (aq)	(2)
	silver ions should have one positive charge / Ag ⁺ or silver chloride is AgCl	Ignore just the charge on the silver ion is incorrect / the formula of silver chloride is incorrect	

Question number	An	nswer	Additional guidance	Mark
(b)	•	calculation of mol of C, H and Cl (1)	Example of calculation: C : H : CI mol 3.09 : 0.26 : 9.15 12 : 1 : 35.5 = 0.2575 : 0.26 : 0.2577	(3)
	•	calculation of empirical formula (1)	(ratio 1 : 1 : 1) Empirical formula is CHCl molar mass CHCl = 12 + 1 + 35.5 = 48.5	
	•	calculation of molecular formula (1)	$\frac{\text{molar mass (CHCI)}_n}{\text{molar mass CHCI}} = \frac{97}{48.5} = 2$	
			Molecular formula is C ₂ H ₂ Cl ₂	
			Allow symbols in any order	
			Do not award 2CHCl	
			Ignore SF in mol and ratio	
			Correct molecular formula with some working scores (3)	
			Alternative method scores (3) no. C atoms = $\frac{3.09 \times 97}{12.5 \times 12}$ = 2 / 1.9982	
			no. H atoms = <u>0.26 x 97</u> = 2(.0176) 12.5 x 1	
			no. Cl atoms = <u>9.15 x 97</u> = 2 12.5 x 35.5	

Question number	Answer	Additional guidance	Mark
(c)(i)	all 4 ion formulae all 4 (corresponding) m / z values	Example of answer: ions	(2)

Question number	Answer	Additional guidance	•	Mark
(c)(ii)	number of bonding pairs	Example of table:		(3)
	and	bonding pairs	3	
	number of lone pairs	of electrons on		
	number of lone pairs	nitrogen		-
		Number of lone pairs on	1	
	• shape	electrons on		
	bond angle	nitrogen		
	bond angle	Shape of	trigonal	
		molecule	pyramid al	
		Bond angle	107°	-
		Shape:	107	1
		Allow 3-dimensional of	drawing e.g.	
		CI N. CI		
		There must be at leas dotted/dashed line or for 3-d Allow just 'pyramidal' Allow pyramid for pyra Do not award tetrahe	wedge amidal	
		Bond angle: Allow any number in trange 106-108° Ignor missing °		
Edexcel (l	AL) Chemistry A-level 2	Phys	sicsAndMaths	STutor.co

Question number	Answer	Additional guidance	Mark
(d)(i)	An explanation that makes reference to one of the following pairs of points:	Marks must come from the same route – maximum 1 mark if one point from one route and	(2)
	Polarisation route	one point from the other	
	 an aluminium ion / cation is (very) small and highly charged 	10 m	
	or	Allow the aluminium	
	Al3+ has a small ionic radius / is small	ion has a high charge density	
	so it polarises / distorts the chloride ion / Cl ⁻ / anion		
	Allow Electronegativity route	Allow a description of	
	there is a (relatively) small difference in	polarisation Allow	
	electronegativity between aluminium and chlorine	chlorine anion / ion	
		Ignore the	
	101 00 00	aluminium chloride	
	so the electrons are (partially) shared	is polarised	
		Ignore size of chloride ion	

Question number	Answer	Additional guidance	Mark
(d)(ii)	A description including the following points:	Example of diagram:	(2)
	diagram showing two AlCl ₃ molecules joined through two chlorine atoms	Allow dot-and-cross diagram Ignore missing arrow heads and lone pairs from diagram Do not award diagram	
	dative (covalent) bonds or coordinate bonds	with Al-Al / Cl-Cl bond(s) Allow dative covalent bonds labelled on diagram / shown as arrows from Cl to Al Allow description of dative	
		Allow M2 even if only 1 dative bond shown / mentioned	
		Do not award M2 if dative bonds starting from aluminium Do not award M2 for any	
		answer that mentions ions / ionic bonds	S.

Q2.

Question number	Answer	Mark
	The only correct answer is C	(1)
	(more protons than N^{3-} but the same number of electrons as N^{3-})	
	A is incorrect because Al³+ has more protons and the same number of electrons as N³-	
	B is incorrect because Al ³⁺ has the same number of electrons as N ³⁻	
	D is incorrect because Al ³⁺ has more protons and the same number of electrons as N ³⁻	

Q3.

Question number	Answer	Mark
	The only correct answer is D	(1)
	A is incorrect because magnesium chloride has ionic bonding	
	B is incorrect because magnesium chloride has ionic bonding	
	C is incorrect because the charges are incorrect	

Q4.

Question number	An	swer	Mark
	The	e only correct answer is B (Mg ²⁺)	(1)
	A	is incorrect because anions are polarised and do not cause polarisation	
	С	is incorrect because Na ⁺ has less polarising ability than Mg ²⁺ as it has a larger radius and a lower charge	
	D	is incorrect because anions are polarised and do not cause polarisation	

Q5.

Question number	Answer	Mark
(a)	A R and U	1

Question number	Answer	Mark
(b)	C Y	1

Question number	Answer	Mark
(c)	C U ²⁺ and T ²⁻	1

Question number	Answer	Additional guidance	Mark
(a)		Example of diagram:	1
	dot-and-cross diagram, including charges	Allow no electrons or 8 electrons on outer shell of Mg Allow any combination of dots or crosses for electrons Ignore missing square brackets	

Question number	Answer		Additional guidance	Mark
(b)	An explanation that makes reference to the following points:			3
	identification of charge carriers: magnesium - electrons and magnesium chloride - ions	(1)		
	magnesium conducts electricity when solid because delocalised electrons can flow through	(1)		
	magnesium chloride does not conduct when solid because the ions cannot move and it does conduct electricity when molten or dissolved in water as the ions can move.	(1)		

Question number	Answer	Additional guidance	Mark
(c)(i)	correct balanced ionic equation with state symbols	Examples of equation:	1

Question number	Answer	Additional guidance	Mark
(c)(ii)	calculation of moles of MgO (1)	Example of calculation: $moles MgO = \underbrace{2.45}_{40.3} = 0.060794$	3
	calculation of moles of HCl (1)	1010	
	calculation of volume of HCl (1)	volume HCl = $0.121588 \times 1000 = 60.794 \text{ cm}^3$ 2.00 Ignore SF except 1 SF	
		Allow use of A _r (Mg) = 24 (61.25 cm ³) Correct answer with no working scores full marks	

Question number	Answer		Additional guidance	Mark
(d)	Eith an		Example of calculation:	2
	 tither calculation of moles of MgCO₃ 	(1)	moles $MgCO_3 = \frac{2.25}{84.3} = 0.02669$	
	 calculation of mass of MgCl₂ 	(1)	mass $MgCl_2 = 0.02669 \times 95.3 = 2.5436$ (g)	
	or		or	
	use of both molar masses	(1)	84.3 g MgCO ₃ makes 95.3 g MgCl ₂	
	 calculation of mass of MgCl₂ 	(1)	so 2.25 g MgCO ₃ makes <u>95.3</u> × 2.25 = 2.5436 (g) MgCl ₂ 84.3	
			Ignore SF except 1 SF	
			Allow use of $A_r(Mg) = 24 (2.5446 g)$	
			Correct answer with no working scores full marks	

Question number	Answer	Additional guidance	Mark
(e)	An explanation that makes reference to the following points:	Ignore calculations	2
	(in the reaction with magnesium oxide) there are fewer waste products/no carbon dioxide is released/water is the only waste product	Allow reverse arguments	
	so the molar mass of all products is lower/the denominator of the equation for atom economy is lower		
	or		
	1 mol of magnesium compound produces 1 mol of magnesium chloride (1)		
	 but the M_r of magnesium carbonate is greater than the M_r of magnesium oxide/carbon dioxide is an additional waste product from magnesium carbonate. 		