Q1.

3	(a)	(i) simple/discrete covalent/molecular		[1]	
		(ii)	giant/macro covalent/molecular (NOT atomic)	[1]	
		(iii)	(giant) ionic	[1]	
			eneral statement that strong attraction means high m.pt. dweak means low	[1]	
					4
	(b)	(i)	$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$ or $CO_2 + NaOH \rightarrow NaHCO_3$ (this mark is negated if candidate states that SiO ₂ dissolves/reactions)	[1]	
			$SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$ or $SnO_2 + 2NaOH + H_2O \rightarrow Na_2Sn(OH)_4$ etc	[1]	
			neither of the above marks can be awarded, allow CO ₂ and SnO ₂ solve/react but SiO ₂ does not, for [1])		
		(ii)	CO ₂ and SiO ₂ - no reaction	[1]	

(c) $PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2$ [1]

 $SnO_2 + 4HCl \rightarrow SnCl_4 (or Sn^{4+} + 4CI) + 2H_2O$

$$E_{ceil} = 1.47 - 1.36$$

= 0.11 (V) [for 1 M HC] [1]

or

$$Pb^{4+} + 2CI \rightarrow Pb^{2+} + Cl_2$$
 [1]

$$E_{cell} = 1.69 - 1.36$$

= 0.33 (V) [for 1 M HC] [1]

2

[1]

Q2.

2 (a) covalent (giant or macro) negates, as also does any reference to ionic bonding) [1] (simple molecular is not enough - look for covalent) tetrahedral [1] (b) (i) plotting (allow ±1°) 138 - 151°C (stated in numbers, or read from the graph) [1] (ii) (b. pt. increases due to) larger intermolecular / van der Waals / induced dipole (NOT permanent dipole) / attractions [1] due to the larger no. of electrons or more shells of electrons (in MX4) [1] (c) (i) Si has empty low-lying orbitals or empty d-orbitals (C does not) [1] (ii) SiCl₄ + 2H₂O SiO₂ + 4HCl [1] [or SiCl₄+4H₂O _____ Si(OH)₄+4HCl etc.] (iii) (yes), because Ge also has empty (low lying d-) orbitals [1] (d) (i) SiCl₄ + 2Zn _____ Si + 2ZnCl₂ [NOT ionic equation] [1] (ii) mass = 250 x 2 x 65.4/28.1 = 1164 (g) (actually 1163.7 - but allow 1160) [2]

allow e.c.f from the stoichiometry of the candidate's equation e.g. allow **582**g for [2] marks if the equation shows the stoichiometry to be 1:1. But if 582g is obtained because the candidate forgot to apply the stoichiometry as given in the equation, award only [1] mark.

correct answer = [2], with – [1] for one error. OR marks as follows: use of 2:1 ration [1] correct use of A, data for Si and Zn [1]

Total = [12]

Q3.

```
3 (a) (i) 2CO + O_2 \longrightarrow 2CO_2
                                                                                                   (or x ½)
                  2PbO<sub>2</sub> ---- 2PbO + O<sub>2</sub>
                                                                                                                     [1]
            (ii) +4 state becomes less stable down the group
                                                                                                                     [1]
                                                                                                                          [2]
                  or +2 state becomes more stable down the group
        (b) (i) Pb^{II} : Pb^{IV} = 2:1
                                                                                                                     [1]
            (ii) Pb_3O_4 \longrightarrow 3PbO + \frac{1}{2}O_2
                                                                                                                      [1]
            (iii) Pb_3O_4 + 4HNO_3 \longrightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O
                                                                                                                      [1]
           (iv) PbO/Pb(II) is more basic than PbO<sub>2</sub>/Pb(IV)
                                                                                                                      [1]
                  as PbO2 does not react /form a salt with HNO3
                                                                                                                      [1]
                 or PbO does react etc.
                                                                                                                          [5]
       (c) SnO + 2NaOH \longrightarrow Na<sub>2</sub>SnO<sub>2</sub> + H<sub>2</sub>O
                                                                                          (or Na<sub>2</sub>Sn(OH)<sub>4</sub> etc.)
             (NOT SnO<sub>2</sub> or PbO)
                                                                                                                          [1]
                                                                                                                  [Total: 8]
Q4.
         (a) tetrahedral diagram (either dashed+wedge, or similar representation)
               angles (all) 109° - 110°
                                                                                                                   [1]
              (award [0] for part (a) if an angle of 90° or 180° is mentioned)
                                                                                                                        [2]
          (b) volatility decreases or boiling points increase
               (allow b.pt. CC4 > SiC4 but b.pt. increases thereafter)
                                                                                                                   [1]
[1]
               due to greater van der Waals'/intermolecular forces or due to more electrons
                                                                                                                        [2]
              (mention of "ions" negates this mark)
         (c) (i) Pb4+/Pb2+: E+=+1.69V, Sn4+/Sn2+: E+=+0.15V,
                                                                                                            [both] [1]
                   a valid comment about relative redox power or stability, e.g.:
                   (hence) Sn2+ easily oxidised or Sn4+ is more stable than Sn2+ or
                   Pb4+ is easily reduced or Pb2+ is more stable than Pb4+ or
                   +2 oxidation state more stable down the group
                                                                                                                   [1]
              (ii) Sn^{2+} + I_2 \longrightarrow Sn^{4+} + 2I^-

Pb^{4+} + SO_2 + 2H_2O \longrightarrow 4H^+ + SO_4^{2-} + Pb^{2+}
                                                                                                                    [1]
                                                                                                                   [1]
                   (N.B. no marks in (ii) for E° values)
                                                                                                                        [4]
```

Q5.

(allow [1] out of [2] salvage mark for 474 & 386; 962 & 874; or -962 & -874)

(ii) Yes: the +4 state becomes decreasingly stable – the ΔH is less exothermic (mark is for relating ΔHs to stability: allow ecf from d(i) and also from c(i)) [1]

[1]

[Total: 11]

[3]

(d) (i) for Si: $\Delta H = 244 - 2(359) = -474$ (kJ mol⁻¹)

for Sn: $\Delta H = 244 - 2(315) = -386$ (kJ mol⁻¹)

- 3 (a) PbO₂ decomposed into PbO (and O₂). (SnO₂ is stable) [1]
 - (b) (i) PbC l_4 dissociates into C l_2 and PbC l_2 (white solid) or PbC $l_4 \longrightarrow$ PbC $l_2 +$ C l_2 or in words (1) (1) C $l_2 +$ 2KI \longrightarrow 2KCl + I $_2$ (1)
 - $E^{\circ}(CL/CL)$ is more positive than $E^{\circ}(L_2/L)$ (1)
 - (ii) SnCl₄ is more stable than PbCl₄ / answers using E° accepted (1) (5 max 4) [4]
 - (c) (i) (1) CtC:Ct or Ct=C-Ct
 - bent or non-linear or angle = 100-140° (1)
 - (ii) $CC_k + H_2O \longrightarrow CO + 2HCl$ (1) [3]

[Total: 8]

(1)

Q6.

- (a) SiF₄ is symmetrical or tetrahedral or bonds are at 109° or has no lone pair or 4 electron pairs shared equally or all Si-F dipoles cancel out, or SF₄ has a lone pair (on S).
 (1) [1]
 - $\begin{array}{|c|c|c|c|c|} \hline \textbf{(b)} & & & & & & & & & \\ \hline & \textbf{compound} & & \textbf{molecule has} & & \textbf{molecule does not have} \\ & \textbf{BC}l_3 & & & & & \\ \hline & \textbf{BC}l_3 & & & & & \\ \hline & \textbf{PC}l_3 & & & & & \\ \hline & \textbf{CC}l_4 & & & & \checkmark \\ \hline & \textbf{SF}_8 & & & & \checkmark \\ \hline \end{array}$

mark row-by-row, (2) [2]

- (c) (i) Si and B have empty / available / low-lying orbitals or C does not have available orbitals (allow "B is electron deficient" but not mention or implication of d-orbital on B)
 - (ii) $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HCl \text{ or } 2BCl_3 + 3H_2O \rightarrow B_2O_3 + 6HCl$ (1)
 - $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCletc., e.g. \rightarrow Si(OH)_4, H_2SiO_3$ (1) [3]

(d) (i)
$$Si_3Cl_8O_2$$
 (this has $M_r = 84 + 280 + 32 = 396$) or $Si_4Cl_4O_9$ or $Si_8Cl_4O_2$ (1)

(ii)

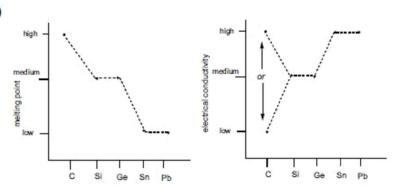
mass number	structure
133	Cl₃Si
247	Cl ₃ Si-O-SiCl ₂
263	Cl ₃ Si-O-SiCl ₂ -O

(if correct structures are **not** given for last 2 rows, you can award (1) mark for **two** correct molecular formulae:

either Si₂Cl₅O + Si₂Cl₅O₂ or Si₃ClO₈ + Si₃ClO₉ or Si₇ClO + Si₇ClO₂)

(iii)

allow ecf on the structure drawn in the third row of the table in (ii) but any credited structure must show correct valencies for Si, Cl and O.


(1) [5]

[Total: 11]

(3)

Q7.

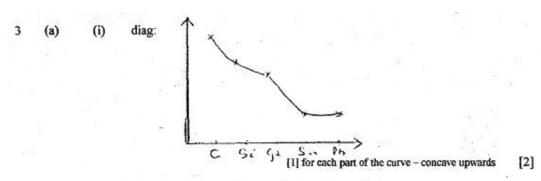
2 (a) (i)

[2] + [2]

(ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding (or implied from at least two specific examples, e.g. diamond and tin) (mention of simple covalent anywhere negates this mark)

[1]

conductivity trend: increasing delocalisation of electrons (down the group)
or e are more free-moving


[1]

(or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e⁻)

[6]

```
(b) (i) heat PbO₂, or T > 200°C or Δ on arrow: PbO₂ → PbO + ½O₂ (N.B. ½O₂ NOT [O])
                                                                                                               [1]
       (ii) (burning CO in air produces CO<sub>2</sub>):CO + ½O<sub>2</sub> → CO<sub>2</sub>
                                                                                                               [1]
             blue flame (ignore ref to limewater test)
                                                                                                               [1]
      (iii) e.g. SnCk(aq) will turn KMnO4 from purple to colourless
                                                                                                               [1]
             5Sn^{2+} + 2MnO_4^- + 16H^+ \rightarrow 5Sn^{4+} + 2Mn^{2+} + 8H_2O
                                                                                                               [1]
             or SnCl<sub>2</sub>(aq) will turn K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> from orange to green
                                                                                                               [1]
             3Sn^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O
                                                                                                               [1]
             or SnC½(aq) will turn Fe<sup>3+</sup> from orange/brown/yellow to green/colourless Sn<sup>2+</sup> + 2Fe<sup>3+</sup> → Sn<sup>4+</sup> + 2Fe<sup>2+</sup>
                                                                                                               [1]
                                                                                                               [1]
             or SnCb(aq) will turn Cu2+(aq) from blue to colourless or give a pink/brown/copper-
             coloured ppt.
             Sn^{2+} + Cu^{2+} \rightarrow Sn^{4+} + Cu
                                                                                                               [1]
             Other possible oxidants (E° must be > +0.2V) include: S2O82, H2O2, Cl2, Br2, I2 and Ag*.
             No observations with the first three of these, but this should be stated explicitly, e.g. "no
             colour change".
                                                                                                               [5]
                                                                                            [Total: 11 max 10]
Q8.
        (a) (i) volatilities decrease down the group
                                                                                                                    [1]
                  due to greater van der Waals (VDW) forces (intermolecular is not sufficient)
                                                                                                                    [1]
                  due to larger no of electrons
                                                                                                                    [1]
             (ii) CC4 does not react with water
                                                                                                                    [1]
                  CC4 unreactive due to no d-orbitals
                                                                                                                    [1]
                  GeC 14 and PbC 14 hydrolyse/react
                                                                                                                    [1]
                  MCl_4 + 2H_2O \longrightarrow MO_2 + 4HCl(M = Ge \ or Pb)
                                                                                                                    [1]
                                                                                                                    [7]
        (b) (i) B is PbSO4 and C is PbC b
                                                                                                                   [1]
            (ii) SnO_2 + 2H_2SO_4 \longrightarrow Sn(SO_4)_2 + 2H_2O
                                                                                                                   [1]
                   PbO2 + H2SO4 ----- PbSO4 + H2O + 1/2 O2
                                                                                                                   [1]
                    PbO2 + 6HC1 ----- H2PbCl6 + 2H2O
                                                                                                                   [1]
                           H<sub>2</sub>PbCk → PbCk + 2HCl + Ck
                                                                                                           [5 max 4]
                                                                                                          [Total: 11]
```

Q9.

If [2] cannot be awarded, look at the following alternative marking schemes:

either split the curve into two parts: C to Ge and Ge to Pb. Give [1] for each part if it's correct or award [1] for a general downward trend in the whole curve

- (ii) any two of C, Si, Ge: giant/macro covalent/molecular/atomic [1]
 (if only two are stated as giant etc, the other one must NOT contradict, e.g. van der Waals or ionic)
 weaker/longer bonds in Si or Ge than C [1]
 Sn or Pb or "the last two": metallic bonding [1]
- (b) (i) no reaction/hydrolysis or insoluble or immiscible [1]
 (ii) gives (HCl) fumes/gas or ppt/white solid/gel (of SiO₂) [1]
 - (iii) SiCl₄ + 2H₂O → SiO₂ + 4HCl [1] [allow balanced equations giving H₂SiO₃ or Si(OH)₄, but not partial hydrolysis to SiOCl₂ etc] [penalise other equations, e.g. CCl₄ + H₂O, only if mark in (i) HAS been awarded]
 - (iv) Si has (available) d-orbitals (so attack by nucleophiles is easier) [1]

Total: 9 max 8

Q10.

```
(a) (i) melting point: graph showing (Si (+ Ge): medium)
                                 and C: higher than Si/Ge
                                                                                                    [1]
[1]
                                        Sn + Pb: lower than Si/Ge
          conductivity: graph showing (Si (+ Ge): medium)
                                  and C: lower (or higher!) than Si/Ge
                                        Sn + Pb: higher than Si/Ge
                                                                                                    [1]
          [for your information, the actual figures are shown below]
     (ii) Sn, Pb (and C(graphite)) have delocalised electrons/metallic bonds
          Si, Ge (and C(diamond)) have localised electrons/covalent bonds
                        [for [2] marks carbon has to be mentioned once, and the allotrope mentioned
                        must fit in with the conductivity shown]
(b) (i) e.g. CO burns to give CO_2 [2CO + O_2 \longrightarrow 2CO<sub>2</sub>] or CO reduces Fe_2O_3 [3CO + Fe_2O_3 \longrightarrow 3CO<sub>2</sub> + 2Fe]
     two valid examples
                                                 two balanced equations
                                                 [two valid and balanced equations warrants [3] marks]
                                                                                                     3
(c) use: pottery/china/porcelain etc + property: hardness, high melting point, insulator etc.
               (any one use + one relevant property)
                                                                                                    [1]
                                                                                                     1
(d) (i) amphoteric
                                                                                                    [1]
     (ii) e.g.
                  SnO + 2HC1 ---- SnCl2 + H2O
                                                                                                    [1]
                 SnO + 2NaOH ----- Na2SnO2 + H2O
          e.g.
                                                                                                    [1]
                                                                                                     3
                                                                                              total: 13
```

(Actual figures for (a) (i):)

element	m.pt./°C	conductivity
C(graph)	3652	2 x 10 ³
C(dia)	3550	1 x 10 ⁻¹⁵
Si	1410	2 x 10 ⁻²
Ge	937	2 x 10 ⁻²
Sn	232	9 x 10°
Pb	328	5 x 10 ⁴

Q11.

```
1 (a) boiling points increase down the group (because of...) (1)
              ...larger van der Waals/intermolecular attractions or bigger induced dipoles (1)
              due to more electrons per molecule (1)
                                                                                                                   [3]
        (b) tetrahedral - clear from diagram (1)
              angles = 109°-110° (1)
                                                                                                                   [2]
                     four bonded pairs + 2 lone pairs around Xe (1)
        (c)
                     three lone pairs on at least one F atom (1)
                     square planar (can be read into very clear diagram in (i)) (1)
                     angles = 90° (1)
                                                                                                                   [4]
             CC4 does not react or SiC4 does (or read into an equation) (1)
        (d)
              due to presence of available/low-lying/d-orbitals on Si (1)
              SiCl<sub>4</sub> + 2H<sub>2</sub>O ---- SiO<sub>2</sub> + 4HCl
              (or SiCl<sub>4</sub> + 4H<sub>2</sub>O ----→ Si(OH)<sub>4</sub> + 4HCl etc: also allow partial hydrolysis) (1)
                                                                                                                   [3]
        (e) PbCl_4 + 8 Na + 4 C_2H_5Cl \longrightarrow Pb(C_2H_5)_4 + 8 NaCl(1)
              Pb(C_2H_5)_4 = 207 + 4x29 = 323(1)
              323g needs 8 x 23 = 184g Na
              :: 1000g needs 1000 x 184/323 = 569 or 570g
                                                                       ecf from equn (1)
                                                                       (correct ans = (2) marks)
        (alternative method:
              1.0kg of Pb(C2H5)4 is 3.096 moles (1)
              :: we need 8 x 3.096 = 24.77 moles of Na, which is 569 or 570g) (1)
                                                                                                                   [3]
                                                                                                          [Total: 15]
Q12.
  4 (a) CC4 is unreactive. (The rest react (with increasing vigour))
                                                                                                                 [1]
[1]
            no d-orbitals or available/low-lying empty orbitals in carbon or unable to expand octet
            e.g. SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl
            (or GeCL etc)
                                         or Si(OH)2Cl2
                                         or Si(OH)4
                                         (allow balanced equations for partial hydrolysis)
                                                                                                                 [3]
       (b) (i) E(Cl-Cl) = 244 kJ mol<sup>-1</sup>;
                                               2 E(C-Cl) = 2 \times 340 = 680 \text{ kJ mol}^{-1}
                 ∴ ΔH = -436 (kJ mol<sup>-1</sup>)
                                                                                                                 [1]
            (ii) \Delta H = 359 - 329 = +30 \text{ (kJ mol}^{-1}\text{)}
                                                                                                                 [1]
          (iii) since reaction (ii) is endothermic, the +4 oxidation state is less stable
                 or the +2 oxidation state is more stable (down the group)
                                                                                                                 [3]
                                                                                                         [Total: 6]
```

Q13.

- 4 (a) (i) SnO_2 Can be read into equation (1) $2NaOH + SnO_2 \rightarrow Na_2SnO_3 + H_2O$ (1) (ii) PbO Can be read into equation (1) $PbO + 2HCl \rightarrow PbCl + H_2O$ (1) [4] (b) moles of oxygen = 9.3/16 = 0.581 mol moles of lead = 90.7/207 = 0.438 mol (both 3 s.f.) (1) so formula is Pb_3O_4 (1) [2] (c) (i) $K_{sp} = [Pb^{2+}][Cl^-]^2$ (1) units = $mol^3 dm^{-8}$ (1) (ii) if $[Pb^{2+}] = x$, $K_{sp} = 4x^3$, so $x = \sqrt[3]{K_{sp}/4}$ $[Pb^{2+}] = \sqrt[3]{2 \times 10^{-5}/4} = 1.71 \times 10^{-2} \text{ mol dm}^{-3}$ (1)
 - (iii) $[Pb^{2+}] = 2 \times 10^{-5}/(0.5)^2 = 8.0 \times 10^{-5} \text{ mol dm}^{-3} (1)$
 - (iv) common ion effect, or increased [Cl] forces solubility equilibrium over to the left (1)

[Max 4]

[Total: 10]

Q14.

- 8 (a) (i) diagram to show tetrahedral arrangement (3D or bond angle marked) (1)
 - (ii) 4 covalent bonds/bond pairs (with Cl) only or no lone pairs. (1) [2]
 - (b) (i) steamy/white fumes/gas or heat evolved (1) (fumes are) HCl (from hydrolysis of Sn-Cl bonds) or exothermic reaction/bond breaking (1) (can award second mark for HCl (g) in eqn.)
 - (ii) SnCl₄ + 2H₂O → SnO₂ + 4HCl etc. (allow partial hydrolysis and with OHs) (1) [3]

[Total: 5]

Q15.

2 (a) (i) Si-Si bonds are weaker (than C-C bonds) [1] (ii) metallic (Sn) is weaker than (giant) covalent (Ge) [1] [2] (b) (i) SiC4 + 2H2O ----> SiO2 + 4HC1 $\begin{array}{ll} \text{or SiCl}_4 \ + \ 4H_20 & \longrightarrow & \text{Si(OH)}_4 + 4HCl \\ \text{or SiCl}_4 \ + \ 3H_20 & \longrightarrow & H_2\text{SiO}_3 + 4HCl \end{array}$ (partial hydrolysis is not sufficient e.g. to SiCbOH + HCl) [1] (ii) PbCl₄ ----> PbCl₂ + Cl₂ [1] (iii) SnCl₂ + 2FeCl₃ ----> SnCl₄ + 2FeCl₂ [1] (iv) SnO₂ + 2NaOH → Na₂SnO₃ + H₂O $or SnO_2 + 2NaOH + 2H_2O \longrightarrow Na_2Sn(OH)_6$ $or ionic equation SnO_2 + 2OH \longrightarrow SnO_3^{2-} + H_2O$ [1] [4] [Total: 6] Q16. 4 (a) (i) Carbon (graphite) has delocalised electrons whereas silicon's electrons are localised. [1] (ii) Tin has metallic structure or delocalised/mobile electrons whereas germanium has localised electrons or giant covalent structure [1] [2] (b) (i) 2PbO₂ ----> 2PbO + O₂ [1] (ii) $PbO_2 + 4HCl \longrightarrow PbCl_2 + Cl_2 + 2H_2O$ [1]

(iii) SnO + 2NaOH ----- Na₂SnO₂ + H₂O

(iv) GeC 14 + 2H2O -----> GeO2 + 4HC1

[Total: 6]

[1]

[1] [4]