Q1 (a) Barium ions are poisonous. Patients with digestive tract problems are sometimes
given an X-ray after they have swallowed a 'barium meal', consisting of a suspension of
BaSO4 in water. The [Ba2+(aq)] in a saturated solution of BaSO4 is too low to cause
problems of toxicity.

(i) Write an expression for the solubility product, K_{SP}, for BaSO₄, including its units.

(ii) The numerical value of K_{SP} is $1.30 \cdot 10^{-10}$.	. Calculate [Ba2+(aq)] in a saturated solution of
BaSO4.	

(iii) The numerical value of K_{SP} for BaCO₃ (5 · 10–10) is not significantly higher than that for BaSO₄, but barium carbonate is **very** poisonous if ingested. Suggest a reason why this might be so.

(b) A useful commercial source of magnesium is sea water, where [Mg2+(aq)] is 0.054 moldm–3. The magnesium is precipitated from solution by adding calcium hydroxide.

$$\mathrm{Mg^{2+}(aq)} \; + \; \mathrm{Ca(OH)_2(s)} \; \longrightarrow \; \; \mathrm{Ca^{2+}(aq)} \; + \mathrm{Mg(OH)_2(s)}$$

(i) Write an expression for the K_{SP} of Mg(OH)2, including its units.

(ii) The numerical value for K_{SP} is 2.00 x 10–11. Calculate [Mg2+(aq)] in a saturated solution of Mg(OH)2.

(iii) Hence calculate the maximum percentage of the original magnesium in the seawater that this method can extract.

(c) The magnesium ions in seawater are mainly associated with chloride ions.

(i) Use the following $\Delta H_{\rm f}^{\Phi}$ values to calculate a value for the ΔH^{Φ} of the following reaction.

$$MgCl_2(s) \longrightarrow Mg^{2+}(aq) + 2Cl^{-}(aq)$$

species	∆H [⊕] /kJ mol ⁻¹
MgCl ₂ (s)	-641
Mg ²⁺ (aq)	– 467
Cl ⁻ (aq)	-167

(i) Write an expression for K_a .

(ii) Use the Ka value to ca	lculate the pH of a 0.	15 moldm–3 solution	of ibuprofen.
(c) To avoid problems with carried out into ways of accompound is dissolved in (i) What do you understan	dministering ibuprofer a hydrophilic gel whi ad by the term <i>buffer</i>	n using skin patches. ch acts as a buffer.	
The buffer used in the and NaH ₂ PO ₄ . These satisfies the second control of the second	pharmaceutical pre alts contain the HPC	paration is a solutio ^{2–} and H ₂ PO ₄ ions r	
H+ ions,			
OH- ions			
(iii) A buffer solution conta salts has a pH of 7.20. Ca moldm-3 of Na2HPO4 and	lculate the pH of a pl	harmaceutical prepar	• •
			(Nov 2006)
Q3 (a) Explain what is me	ant by the <i>Bronsted-</i>	Lowry theory of acids	s and bases.
(b) The Ka values for som	o organic acids are li	stad balaw	
(b) The Na values for som			
	acid	K _a /mol dm ⁻³	
	CH ₃ CO ₂ H	1.7×10^{-5}	
	C1CH2CO2H	1.3×10^{-3}	
	C1 ₂ CHCO ₂ H	5.0×10^{-2}	

(i) Explain the trend	in <i>K</i> a va	alues	s in t	erm	ns c	of th	ie s	tru	ctu	res	of	the	se	acio	ds.					
											••••							•••••		
												••••								
(ii) Calculate the ph	 I of a 0	 .10 r	nol o	 dm□	3 S C	olut	ion	of	 C/ (CH:	 2 C () D2F	 H.		••••					
(iii) I loo tha fallawia	· · · ·	ام ما	امده	. حالا	~ 1:1	.at:						اريم	ام ام	-1-	:	، مار،	an 0	0	 .	£
(iii) Use the following 0.10 mol dm□3 NaOl																			пз о	ī
	14 —			$\overline{}$				\top	_			$\overline{}$	_	<u> </u>						
								\pm												
				1				\perp												
	+			+			_	+				+				\vdash				
	+			+				+				+								
n∐	7																			
рН	′ 🔲			T				T				\perp								
	+	_		+			_	+				+								
	+			+	\vdash	\dashv	+	+	+		\vdash	+	+	+		\vdash				
								士												
												1								

volume of NaOH added / cm³ (c) (i) Write suitable equations to show how a mixture of ethanoic acid, CH3CO2H, and sodium ethanoate acts as a buffer solution to control the pH when either an acid or an alkali is added.

(ii) Calculate the pH of a buffer solution containing 0.10 mol dm₃ ethanoic acid and 0.20 mol/dm₃ sodium ethanoate.

(June 2009)

Q4 (a) State briefly what is meant by the following terms.

(i) reversible reaction

.....

(ii) dynamic equilibrium
(b) Water ionises to a small extent as follows.
$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$ $\Delta H = +58 \text{ kJ mol}^{-1}$
(i) Write an expression for K_c for this reaction.
(ii) Write down the expression for K_W , the ionic product of water, and explain how this can be derived from your K_C expression in (i).
(iii) State and explain how the value of K_w for hot water will differ from its value for cold water.

Ammonia ionises slightly in water as follows.

(c) Kw can be used to calculate the pH of solutions of strong and weak bases.

(i) Use the value of K_W in the Data Booklet to calculate the pH of 0.050 moldm-3 NaOH.

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

The following expression applies to this equilibrium.

$$[H_2O] \times K_c = [NH_4^+][OH^-]/[NH_3] = 1.8 \times 10^{-5} \,\text{mol dm}^{-3}$$

- (ii) Calculate [OH–(aq)] in a 0.050 mol dm–3 solution of NH3. You may assume that only a small fraction of the NH3 ionises, so that [NH3] at equilibrium remains at 0.050 mol dm–3.
- (iii) Use the value of K_W in the *Data Booklet*, and your answer in (ii), to calculate [H+(aq)] in 0.050 mol dm-3 NH3(aq).

(iv) Calculate the pH of this solution.
(June 2011 P41)
Q5 Solutions of amino acids are good buffers. (i) What is meant by the term buffer?
(ii) Write an equation to show how a solution of alanine, CH3CH(NH2)CO2H, behaves as a buffer in the presence of an acid such as HC/(aq).
(iii) Briefly describe how the pH of blood is controlled.
(iv) Calculate the pH of the buffer formed when 10.0 cm ₃ of 0.100 mol dm ₋₃ NaOH is added to 10.0 cm ₃ of 0.250 mol dm ₋₃ CH ₃ CO ₂ H, whose p K_a = 4.76.
(Nov 2011 P43) Q6 A buffer solution is to be made using 1.00 mol dm $^{-3}$ ethanoic acid, CH $_3$ CO $_2$ H, and 1.00 mol dm $^{-3}$ sodium ethanoate, CH $_3$ CO $_2$ Na. Calculate to the nearest 1 cm $_3$ the volumes of each solution that would be required to make 100 cm $_3$ of a buffer solution with pH 5.50. Clearly show all steps in your working. K_a (CH $_3$ CO $_2$ H) = 1.79×10^{-5} mol dm $^{-3}$
volume of 1.00 mol dm-3 CH3CO2H = cm3
volume of 1.00 mol dm $_3$ CH $_3$ CO $_2$ Na =

(ii) added NaOH

(June 2013 P42)