Q1.

Total = [10]

Q2.

7 (a) (i)

· addition requires an unsaturated/double bond or alkene/C=C

- condensation produces a small molecule or water as well as the polymer or loss of mass occurs on polymerisation
- the empirical formula of an addition polymer is the same as that of the monomer any two [1] + [1]

(ii) minimum is:

peptide link shown ala-gly NOT gly-ala

[1] [1] **[4]**

(b) X = deoxyribose

Y = phosphate

Z = thymine

3 x [1] [3]

[2]

(c) (i) (met)- ser-arg-asp- gly (ignore leading met)
whole sequence
three in correct order = [1]

three in correct order = [1].

Deduct [1] mark if "start" or "stop" is included in the amino acid sequence

- (ii) The amino acid gly (or the last amino acid) would be replaced by trp [1] [3]
- (d) (i) e.g. Huntington's, cystic fibrosis, haemophilia, sickle cell anaemia thalassemia, muscular dystrophy, Down's syndrome, phenylketonuria [1]
 - (ii) Suitable explanation e.g. wrong amino acid coded or different aminoacid sequence or incorrect protein produced or extra chromosome (for Down's)
 ...results in/change in 3D structure/change in active site/loss of enzyme activity (or a specific description pertinent to the mentioned disease)

 [1] [3]

[Total: 13]

Q3.

(a)	ester	[1]	[1]
(b)	reaction I: acid/H ⁺ /HC <i>I</i> /H ₂ SO ₄ or alkali/OH ⁻ /NaOH (followed by H ⁺) heat/reflux and aqueous (allow H ₃ O ⁺ to equal H ⁺ + aq, also assume "con- "dil" means aq (but NOT H ₂ SO ₄) also allow aqueous ethanol) (for heat: allow T ≥ 80°C; not "warm")	[1] c" or [1]	
	reaction II: methanol/CH ₃ OH heat with conc . H ₂ SO ₄ /H ₃ PO ₄ or HC <i>l</i> (g) [NOT conc HC <i>l</i>]	[1] [1]	[4]
(c)	(i) BrCH ₂ -CHBr-CH ₂ Br	[1]	
	(ii) HO ₂ C-CO-CO ₂ H	[1]	[2]
(d)	(correct ans [2])	[1] cf [1]	
	(1004/1005kg or 167kg is worth [1]: 333kg is worth [0])		[2
(e)	(i) $C_{17}H_{35}CO_2CH_3 + 27.5 O_2 \longrightarrow 19CO_2 + 19H_2O$ (or $C_{19}H_{39}O_2$)	[1]	
	(ii) 10 × 44 × 19/298 = 28.(05)/28.1 kg ecf from eq (-1 for each error)	u [2]	
	some ecf values: $n = 18 \Rightarrow 26.6 \text{kg}$ $n = 17 \Rightarrow 25.1 \text{kg (allow [2] for each)}$ $n = 16 \Rightarrow 23.6 \text{kg}$		[3]
(f)	 any one of the following. (saving) diminishing resources economic argument (NOT just "cheaper") – e.g. oil will become increasingly respensive as it runs out ref to CO₂ cycle (e.g. no net increase in CO₂, i.e. "carbon neutral") or less gwarming (due to a smaller carbon "footprint") renewable/sustainable 		
	 the effect of biofuel cultivation on world food prices 	[1]	[1]

[Total: 13]

Q4.

polymer	addition/condensation?	formulae of monomers
1	condensation	HO ₂ C-CO ₂ H or CICO-COCI NH ₂ -CH ₂ -CH ₂ -NH ₂
2	condensation	HO-CH ₂ -CH(C ₂ H ₅)-CO ₂ H HO-CH ₂ -CH(CH ₃)-CO ₂ H
3	addition	CH_2 = CH - CH_3 CH_2 = CH - $CONH_2$ CH_2 = CH - C_8H_5
	1 [2] (2 correct: [1])	f) [6] (6 correct: [5]) etc

(2 correct: [1])
(C=C bonds not needed, but penalise –[1] if C-C drawn instead of C=C)
(if more than 7 formulae drawn, then penalise –[1] for each formula in excess of 7)

[8]

[Total: 8]

Q5.

8	(a)	primary:	covalent (ignore amide, peptide etc)	[1]	
			diagram showing peptide bond: (-CHR-)CONH(-CHR-)	[1]	
		secondary:	hydrogen bonds (NOT " between side chains")	[1]	
			diagram showing N-H···O = C	[1]	
		tertiary:	two of the following:		
			 hydrogen bonds (diag. must show H-bonds other than those in α β-pleated sheet – e.g. ser-ser) 	-helix or	
			electrostatic/ionic attraction,		
			 van der Waals'/hydrophobic forces/bonds, (covalent) disulphide (links/bridges) 	[1] + [1]	
			(covalent) distribute (intra-bridges)	[1] . [4]	
			suitable diagram of one of the above	[1]	
			(for disulphide: S-S not S=S or SH-SH)		[7]
	(b)	met-ala-gly-	-ala-gly-arg-val-lys	[2]	
	(-)		le sequence with more than 8 residues, that "uses" all 6 tripeptides (ove		
			that starts with met and ends with lys is worth [1] mark		
		any sequen	ce that does not start with <i>met</i> or end with <i>lys</i> gets zero.		[2]
	(c)	CARE - this	s is not about DNA!		
	, ,		should describe TWO potential effects on tertiary or quaternary structures	caused	
		these includ	cid sidechains de: disruption of H-bonding		
		those molad	disruption of disulphide bridges		
			disruption of electrostatic/ionic attraction		
		/anh. allaw.	disruption of van der Waals' forces		
		(only allow e	effects on the secondary structure if proline is specifically mentioned)	2 x [1]	
		than award	[1] mark each for two of the following bullet points:		
			[1] mark each for two of the following bullet points: iption of the amino acids involved in the above, (or a labelled diagram)		
			[1] mark for each example)		
		a descr	ription of an effect of interchanging amino acids, such as the		
			ng of tertiary structure/different folding/different shape (NOT denatured)		
			ly of an enzyme or changing the active site g of a protein to become less soluble/coagulate (e.g. sickle cells)		
		• causing	g of a protein to become less soluble/coagulate (e.g. sickle cells)	2 x [1]	
				[1]	[4]
			[Total:	13 max	12]

Q6.

- (a) (i) correct diagram showing at least one monomer unit, and at least one N-H and C=O. i.e. -NH-C₆H₂-NH-CO- or -CO-C₆H₄-CO-NH-(no mark for this, but apply a penalty of -[1] if candidate's diagram does NOT show these points correctly) one H-bond between N-H of original chain and C=O group of new chain one H-bond between C=O of original chain and N-H group of new chain [1] (ii) hydrogen bonds or H-bonds (in words; can be written on diagram) (ignore ref to v d W) [1] (iii) [1] allow HO₂C-HOOCallow CICO-HOCO-[1] allow NH₂ [5]
- (b) (i) Water-hating/fearing/repelling/resistant or can't form bonds with water (molecules)

 [NOT insoluble or does not dissolve in water, also NOT "non-polar"]

 (ii) Fluorine-containing groups form van der Waals bonds (with the oil molecules)... [1]

 ...but cannot form hydrogen bonds (with the water molecules) [1]
 - (iii) Teflon/PTFE [1]

[Total: 9]

Q7.

8 (a)

Block letter	Identity of compound	
J	Deoxyribose (NOT "sugar" or "pentose")	
К	Guanine	
L	Phosphate	
M	Thymine	

	All 4 correct score 3 marks, 3 score 2, 2 score 1		[3]
(b)	hydrogen bonds (1) between the bases (1)		[2]
(c)	RNA is a single strand; DNA is double strand RNA contains ribose; DNA contains deoxyribose RNA contains <u>uracil</u> ; DNA contains <u>thymine</u> RNA is shorter than DNA	(1) (1) (1) (1) (4 max 3)	[3
(d)	mRNA – copies the DNA gene sequence or forms a template for a particular polypeptide / in protein synthesis	(1)	
	tRNA - carries amino acids to the ribosome	(1)	[2
		Total	: 10

Q8.

- 6 (a) (i) Primary the amino acid sequence / order / chain or diag. e.g. NH-C-CO-NH-C-CO or amino acids bonded by covalent / amide / peptide bonds (1)
 - (ii) Tertiary the coiling / folding of the protein / polypeptide chain due to interactions between side-chains on the amino acids or the structure which gives the protein its 3-D / globular shape
 (1) [2]
 - (b) (i) Diagram:
 Minimum is CH₂S-SCH₂ (1)
 - (ii) Oxidation / dehydrogenation / redox (1)
 - (iii) Hydrogen / H bonds; ionic interactions / bonds or ion-dipole or salt bridges; van der Waals' or id-id or induced / instantaneous dipole forces (ignore hydrophobic interactions) (2) [4]

(c) (i) Hydrogen bonds

(1)

(ii) Correct new strand present (see below) needed Diagram showing C=O bonding to N-H in new strand... ✓ ...and N-H bonding to C=O in new strand e.g.

New strand must contain a minimum of two amino acid residues in a single chain. Deduct a penalty of –(1) for any wrong H-bond **only** if (2) marks have already been scored.

- (2) [3]
- (d) There are bonds or S-S bridges / linkages between the layers / sheets (in β-keratin) (but only van der Waals interactions between the layers in silk)

(1) [1]

[Total: 10]

Q9.

(a) The tertiary/3-dimensional structure/shape is held together by hydrogen/ionic/van der Waals bonds

[1] [1] These break (relatively) easily/are weak/break at/above 45 °C

(b) (or similar diagrams)

Enzyme + substrate

Enzyme-substrate complex

Enzyme + products

3 × [1]

(c) a competitive inhibitor combines with the enzyme's active site (so preventing the substrate from binding)

non-competitive inhibitor bonds with the enzyme away from the active site/at an allosteric site [1]

this changes the shape of the active site

[1]

Also allow competitive inhibition can be overcome by increasing [substrate] or non-competitive inhibition cannot be removed by increasing [substrate] for the 3rd mark

(d) (i)

Line must be of similar shape to original but level out below original line

[1]

(ii) Inhibitor reduces the number of enzymes with 'working' active sites (owtte)

[1]

[Total: 10]

Q10.

9 (a) (i) One [1] (ii) Any alkene (or allow a cyclic amide, as in caprolactam) [1] (b) Any TWO from: addition needs unsaturated/double bonds/alkene condensation eliminates a small molecule condensation needs a molecule other than a hydrocarbon empirical formula of addition polymer is the same as that of its monomer condensation needs two different functional groups (NOT - "condensation needs two different monomers") 2 × [1] (c) (i) Water [1] (ii) [1] [1] Correct 'ester' bond 'sticks' to rest of molecule Note: candidates need only show 'brackets' if more than one repeat unit shown (iii) Polyesters [1] (d) Monomers in Terylene have to alternate in order to condense out water (owtte) [1] Alkenes can link in any order (and still form a polyalkene) (or diagram showing this) [1]

[Total: 10]

Q11.

	ey are polar/ionic or can hydrogen-bond or are hydrophilic.	[1]
(140	OT 'contain the -OH group', on its own)	[1]
(b) (i)	Primary structure is the <u>sequence/order</u> of <u>amino acids</u> Secondary structure is the H-bonding between C=O & N-H or peptide group/bonds Tertiary structure gives the (overall) 3D structure/shape/folding/globularity (not 'coiling' on its own) or mention of at least one method of forming the 3° structure, e.g.; hydrogen bon between R-groups/side chains; -S-S- bridges; van der Waals forces; ionic interact	
(ii)	The 3° structure provides a complementary shape to that of the <u>substrate</u> or it provides the right/specifically shaped cavity for the <u>substrate</u> . (NOT just 'a cleft') or provides nearby groups to aid the reactions of the <u>substrate</u> (owtte)	[1]
(iii)	(a) Increased temperature (b) Decreased temperature (c) Change in pH (d) Addition of heavy metals (or specified, e.g. Hg/Ag) (e) Addition of inhibitors (competitive or non-competitive) Suitable reasons:	
	 (i) 3D structure changes shape/is deformed/is broken or R-R interactions (or a speexample, e.g. H-bonding) are broken (ii) inhibitor occupies active site. 	ecific
	(iii) either fewer substrate molecules with E > E _a or fewer successful collisions	[2] [6]

	left hand peak labelled as pepsin	[1]
	right hand peak labelled as trypsin	[1]
	(Correct enzymes, but wrong way round, scores [1] only)	-
ii)	Peak between pH 6 and pH 8, and correct name (amylase)	[1]
	The state of the s	[3]
		[Total: 10]
		[Total. To]

Q12.

6	(a)	(i)	Condensation	[1]
		(ii)	ala-ala, gly-gly, ala-gly	[2] [3]
	(b)	(i)	Correct sugar-phosphate backbones (with two sugars and one phosphate attached)	[1]
			C - G pair correct or A - T pair correct	[1]
			deoxyribose label and all bases coming from sugars	[1]
		(ii)	Replication would be slower/difficult because the DNA/strands could not be separated	[1] [4]
	(c)	(i)	Some amino acids have more than one (triplet) code	[1]
		(ii)	loss/disruption of ionic bonding/hydrogen bonding	[1]
		(iii)	There would be a potential loss of all tertiary structure or	
			frameshift - deletion of a base changes protein structure	[1]
				[3]
				ITotal: 101

Q13.

(a)		LDPE HDPE e close packing of unbranched side chains me PE more space between the chains/polymeins		[i th
(b)		der Waals' (VDW) forces weaker		
(c)	Add	dition OR	condensation]
	requ	uires C=C/double bond	does not need C=C/double bond	1
	use	s the same functional group	needs two different functional groups	
	san	ne general (empirical) formula as monomer	different formula	1
	no l	oss of small molecule/H ₂ O/HCI	small molecule /H ₂ O/HCl is formed	1
	Any	two differences		[2
(d)	(i)	(through its long chain of) delocalised electrons is not sufficient	ons/mobile electrons	[
	(ii)	planar		[
		the π bonds/p-orbitals overlap (with each oth	ner)	[
	(iii)	C ₈ H ₆ C ₄ H ₃		[2
		TT W.	re	Ĩ
			[5 max	

Q14.

ITotal: 101

6 (a)

amino acid	structure	type of interaction	
alanine	H₂NCH(CH₃)CO₂H	van der Waals' (NOT hydrophobic)	
cysteine	H ₂ NCH(CH ₂ SH)CO ₂ H	disulfide bonds or S-S	
lysine	H ₂ NCH((CH ₂) ₄ NH ₂)CO ₂ H	ionic/electrovalent hydrogen/H bonds	
serine	H ₂ NCH(CH ₂ OH)CO ₂ H	hydrogen/H bonds	

[3]

[3]

(b) Iron - in haemoglobin or red blood cells; transport of oxygen/CO2 or in myoglobin; transport of oxygen (in muscle) or in cytochromes; cell respiration

[1]

Potassium - in cell membranes/enzymes; controlling the flow of ions/water into or out of cells or - in nerves; controlling nerve impulses or - Na* - K* pump; nerve impulses/control of cell volume/active transport

[1]

Zinc acting as a cofactor in enzymes (or a named one, e.g. carbonic anhydrase); or in making of insulin

[1] [3]

[1]

- (c) (i) ATP + $H_2O \rightarrow ADP + Pi$
 - (ii) Hydrolysis or nucleophilic substitution [1]

[2]

- (d) (i) Sodium or chloride (sweat is salty) and Potassium (water retention in cells) [1]
 - [1]
 - (ii) Hydrogen bonding and reference to water or bonding in mucous molecules

[2]

[Total: 10]

Q15.

6 (a)

substance	protein synthesis	formation of DNA
adenine		✓
alanine	✓	
aspartate	1	
phosphate		1

[3] **[3]**

(b) protein: hydrogen bonds [1]

> between -NH and C=O groups on different (peptide) groups [1]

DNA: hydrogen bonds [1]

between bases / A & T / C & G on different chains

[1] [4]

(c) primary: covalent bonds between (successive) amino acids

[1]

tertiary:

hydrogen bonds	between -COOH / -OH and -NH ₂ (in side chains)
ionic bonds	between -NH ₃ ⁺ and -CO ₂ ⁻ (in side chains)
disulfide bonds	between cysteine molecules / residues / –SH groups (in side chains)
van der Waals/VDW forces	between alkyl groups / non-polar residues (in side chains)

[2] [3] any two rows

[Total: 10]

Q16.

8	(a)	(i)	CO ₂ H CO ₂ H	
			— ĊН— СН ₂ — СН— СН ₂ —	[1]
		(ii)	Addition	[1]
		(iii)	Hydrogen bonding	[1] [3]
	(b)	(i)	more / increase water absorbing properties (allow attracts water more)	[1]
			more polar(ity)/more hydrophilic / has ionic side-chains (as well as hydrophilic ones)	[1]
		(ii)	It should be biodegradable/decompose	[1] [3]
	(c)	idea	a of ion exchange / replacement of Na* for Cd²*/Pb²*	[1]
		(the	metal ions) will be attracted to the carboxylate ions	[1] [2]
	(d)	(i)	condensation	[1]
		(ii)	OH/alcohol groups so highly soluble / able to form hydrogen bonds	[1] [2]
			[Tota	l: 10]

Q17.

6 (a)

substance	protein synthesis	formation of DNA
cysteine	✓	
cytosine		·
glutamine	✓	
guanine		~

[3] [3]

- (b) (i) Hydrogen bonding [1]
 - Between bases or between A,T, C and G (all four needed) [1]
 - - This enables strands to separate or DNA to unzip/unwind/unravel. [1]

[4]

[1]

(c) changes / mutations in DNA

(ii) Bonds are (relatively) weak or easily broken

- · by the addition / insertion /deletion / substitution / replacement of a base
- · adds / deletes / replaces an amino acid or changes the amino acid sequence
- . this causes a loss of function or changes the shape / tertiary structure of the protein
 - any three points [3]

[Total: 10]

Q18.

8	(a)	(i)	$CH_2 = CH-CO_2H$ or $CH_2 = CH-CO_2R$ or $CH_2 = CH-COCI$	[2]
		(ii)	addition (polymerisation)	[1]
		(iii)	C(CH ₂ OH) ₄	[1]
		(iv)	water	[1] [5]
	(b)	 (water is bonded to the polymer by) hydrogen bonding hydrogen bonds are weak or easily broken 		[1] [1] [2]
	(c)	(i)	cross-linking causes no reduction in the number of –OH groups or cross-linking molecules also have –OH groups	[1]
		(ii)	property e.g. becomes harder / more rigid / less flexible / stronger / higher melting point. because the chains are more strongly / tightly held	[1] [1] [3]
			[Tota	: 10]

Q19.

5	(a)	(i)	addition (polymerisation)	[1]
		(ii)	condensation (polymerisation)	[1]
				2
	(b)	hyd	drogen bonding	[1]
				1
	(c)	(i)	HO ₂ CCH ₂ CH ₂ CO ₂ H	[1]
		(ii)	ester (accept "covalent")	[1]
				2
	(d)	(i)	heat with H ₃ O* or heat with OH (aq)	[1]
		(ii)	$H_2N-CH_2-CH(OH)-CH_2-NH_2$ or $H_3N^+-CH_2-CH(OH)-CH_2-NH_3^+$	[1]
			HO ₂ C-CH(OH)-CH(OH)-CO ₂ H or O ₂ C-CH(OH)-CH(OH)-CO ₂	[1]
			(allow bonus mark if the acid/base forms are consistent with the reagent used for the hydrolysis)	[1]
			4 ma	
	Y 23	77 2021		de de La
	(e)	(i)	NC-CH ₂ -CO ₂ · K*	[1]
		(ii)	II: H ₂ + Ni or Na in ethanol [allow LiA IH ₄]	[1]
			III: dilute HCl or H ₂ SO ₄ or H ⁺ (aq)	[1]
				3
			total	: 11

Q20.

8	(a)	(i)	Two interlinked spirals or chains or strands woven round each other	[1]			
		(ii)	By hydrogen bonds between bases	[1] [2]			
	(b)	Tran	nscription – (1)DNA/RNA/nucleic acid unravels – (2)strand is used as a template – (3)mRNA reads the sequence on this strand/ produces complementary strand	[1] [1]			
		Tran	nslation – (4)mRNA binds to the ribosome – (5)tRNA translates the codon from mRNA – (6)tRNA carries amino acids to ribosome/adds a.a. to chain	[1] [1] [1] [max 4]			
	(c)	(i)	Disruption of the secondary/tertiary/quaternary/3D structure of the protein (could be answered in terms of bonds e.g. hydrogen bonds break)	[1]			
		(ii)	The covalent/peptide bonds in the (protein) chain are too strong	[1] [2]			
	(d) Energy is provided by the breakdown/hydrolysis of adenosine triphosphate (ATP) ATP (+ H ₂ O) → ADP + P _i (+ energy) or in words ATP is produced during respiration/Krebs cycle/oxidation of glucose, fats or protein						
		in mitochondria/ADP is recycled					
			τ	Total: 11]			
Q21							
4	(a)	(i)	CH ₂ =CH-CH ₂ CH ₂ CH ₃ accept C ₃ H ₇ on RHS	[1]			
		(ii)	8	[1]			
	(b)	(i)	e.g. C ₄₀ H ₈₂	[1]			
		(ii)	heat + catalysts/SiO $_2$ /Al $_2$ O $_3$ /Pt/ceramic/pumice/zeolite etc if temp given >500 °C	[1]			
		(iii)	bonds broken: $4(C-C) = 4 \times 350 = 1400 \text{ kJ mol}^{-1}$ bond formed: $2(C=C) = 2 \times 610 = 1220 \text{ kJ mol}^{-1}$ $\therefore \Delta H = +180 \text{ kJ mol}^{-1}$ from eqn in (i): $+90 \text{ kJ mol}^{-1}$ for each C=C formed (could be multiples of 90)	[1]			
		(iv)	endothermic reactions ΔH > 0	[1]			
				[Total: 6]			

Q22.

(b) (i) tRNA – each amino acid has its own specific / appropriate tRNA — carry amino acids to ribosomes / mRNA — contains a triplet code / anticodon (ii) ribosome – attaches / moves along / binds to mRNA (1) (1)	10	(a)	(i)	silkworm – hydrogen bonds spider – van der Waals' OR hydrogen bonds		[1] [1]
(b) (i) a polymer formed with the elimination/formation of a small molecule (or example) [1] (ii) any addition polymer e.g. poly(ethene), PVC, etc. [1] (iii) 3 from: addition polymers have a limited range of bonds/monomers addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds [1] condensation polymers/proteins have a range of combinations of amino acids which give a wide range of properties condensation polymers/proteins have more functional groups/sidechains [1] different sequences of amino acids result in different 2*/3* structure [1] Q23. (b) (a) All three amino acids correctly paired [2] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1			(ii)		nsity	
(or example) [1] (ii) any addition polymer e.g. poly(ethene), PVC, etc. [1] (iii) 3 from: addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds [1] condensation polymers/proteins have a range of combinations of amino acids which give a wide range of properties [1] condensation polymers/proteins have more functional groups/sidechains [1] different sequences of amino acids result in different 2°/3° structure [1] Q233. 6 (a) All three amino acids correctly paired [2] Two amino acids correctly paired [1] One labelled H-bond between strands [1] (b) (i) tRNA – each amino acid has its own specific / appropriate tRNA [1] – carry amino acids to ribosomes / mRNA [1] – contains a triplet code / anticodon [1] (ii) ribosome – attaches / moves along / binds to mRNA [1] – assemble amino acids in correct sequence for / synthesises protein [1] (c) (i) Base miscopied / deleted [1] (ii) Sequence of bases is changed This may result in different amino acid sequence – different protein [1]			(iii)	this increases the elasticity/hydrophobic nature of the silk		[1]
(iii) 3 from: addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds condensation polymers/proteins have a range of combinations of amino acids which give a wide range of properties condensation polymers/proteins have more functional groups/sidechains different sequences of amino acids result in different 2°/3° structure [1] [Total: 12 max 10] Q23. 6 (a) All three amino acids correctly paired Two amino acids correctly paired One labelled H-bond between strands (1) (a) (b) (i) tRNA – each amino acid has its own specific / appropriate tRNA - carry amino acids to ribosomes / mRNA - contains a triplet code / anticodon (ii) ribosome – attaches / moves along / binds to mRNA - assemble amino acids in correct sequence for / synthesises protein (ii) Base miscopied / deleted (iii) Sequence of bases is changed This may result in different amino acid sequence – different protein (1)		(b)	(i)			[1]
addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds [1] condensation polymers/proteins have a range of combinations of amino acids which give a wide range of properties [1] condensation polymers/proteins have more functional groups/sidechains [1] different sequences of amino acids result in different 2°/3° structure [1] [Total: 12 max 10] Q23. [6] (a) All three amino acids correctly paired Two amino acids correctly paired Two amino acids correctly paired (1) One labelled H-bond between strands (1) - carry amino acid to ribosomes / mRNA - contains a triplet code / anticodon (1) (ii) ribosome – attaches / moves along / binds to mRNA - assemble amino acids in correct sequence for / synthesises protein (1) (iii) Sequence of bases is changed This may result in different amino acid sequence – different protein (1)			(ii)	any addition polymer e.g. poly(ethene), PVC, etc.		[1]
C23. 6 (a) All three amino acids correctly paired Two amino acids correctly paired (1) One labelled H-bond between strands (1) [3] (b) (i) tRNA – each amino acid has its own specific / appropriate tRNA (1) — carry amino acids to ribosomes / mRNA (1) — contains a triplet code / anticodon (1) (ii) ribosome – attaches / moves along / binds to mRNA (1) — assemble amino acids in correct sequence for / synthesises protein (1) [5] (c) (i) Base miscopied / deleted (1) (ii) Sequence of bases is changed (1) This may result in different amino acid sequence – different protein (1)			(iii)	addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds condensation polymers/proteins have a range of combinations of amino acida wide range of properties condensation polymers/proteins have more functional groups/sidechains	s whic	[1] h give [1] [1]
6 (a) All three amino acids correctly paired Two amino acids correctly paired (1) One labelled H-bond between strands (1) (1) (1) (1) (1) (1) (1) (1				[Total:	12 m	ax 10]
Two amino acids correctly paired (1) One labelled H-bond between strands (1) [3] (b) (i) tRNA – each amino acid has its own specific / appropriate tRNA (1) — carry amino acids to ribosomes / mRNA (1) — contains a triplet code / anticodon (1) (ii) ribosome – attaches / moves along / binds to mRNA (1) — assemble amino acids in correct sequence for / synthesises protein (1) [5] (c) (i) Base miscopied / deleted (1) (ii) Sequence of bases is changed (1) This may result in different amino acid sequence – different protein (1)	Q23	•				
(b) (i) tRNA – each amino acid has its own specific / appropriate tRNA — carry amino acids to ribosomes / mRNA — contains a triplet code / anticodon (ii) ribosome – attaches / moves along / binds to mRNA — assemble amino acids in correct sequence for / synthesises protein (ii) Base miscopied / deleted (1) (iii) Sequence of bases is changed This may result in different amino acid sequence – different protein (1)	6	(a)				
- carry amino acids to ribosomes / mRNA - contains a triplet code / anticodon (ii) ribosome – attaches / moves along / binds to mRNA - assemble amino acids in correct sequence for / synthesises protein (ii) Base miscopied / deleted (iii) Sequence of bases is changed This may result in different amino acid sequence – different protein (1) (1) (1) (1)			Or	ne labelled H-bond between strands	(1)	[3]
- assemble amino acids in correct sequence for / synthesises protein (1) [5] (c) (i) Base miscopied / deleted (1) (ii) Sequence of bases is changed (1) This may result in different amino acid sequence – different protein (1)		(b) (i)	 carry amino acids to ribosomes / mRNA 	(1)	
(ii) Sequence of bases is changed (1) This may result in different amino acid sequence – different protein (1)			(ii)			[5]
This may result in different amino acid sequence – different protein (1)		(c)	(i)	Base miscopied / deleted	(1)	
[Total: 12 may 11]			(ii)	This may result in different amino acid sequence – different protein Can affect shape / tertiary structure of protein	(1)	

Q24.

(a)	Prin	nary:	Covalent bond (ignore amide, peptide etc.) Diagram showing peptide bond: (-CHR-)CONH(-CHR-)	[1]
	Sec	condary:	Hydrogen bonds (NOT between side chains" Diagram showing N-H···O=C	[1] [1]
	Terl	tiary:	Two of the following: • hydrogen bonds (diagram must show H-bonds other than the or β-pleated sheet – e.g. ser-ser) • electrostatic/ionic attraction, • Van der Waals'/hydrophobic forces/bonds, • (covalent) disulphide (links/bridges)	ose in α-helix
			Suitable diagram of one of the above	[1]
			(for disulphide: S-S not S=S or SH-SH)	[max 6]
•				
(a)	(i)	Disulfide	e bond / group / bridge (1)	
	(ii)	The tert	iary structure (1)	
	(iii)			[3]
(b)	(i)	Acid-ba	se / proton donor / neutralisation / salt formation (1)	
	(ii)	The abi	ity of the -CO ₂ H group to form hydrogen bonds (1) and ionic interacti	ons (1)
		The -Co	O ₂ H/-CO ₂ ⁻ group is no longer able to interact with -NH ₂ /-NH ₃ ⁺ (1)	
		The Ag	forms a strong bond with -COO (1)	[5] max [4]
(c)	(i)	8 but all	ow 4O ₂ if specified as molecules (1)	
	(ii)	Dative /	co-ordinate (1)	
	(iii)	Octahed	dral / 6 co-ordinate (1)	[3]
				[Total: 10]
	(a)	(a) (i) (ii) (ii) (c) (i) (ii)	Secondary: Tertiary: (a) (i) Disulfide (ii) The tert (iii) The sub or shape (b) (i) Acid-bas (ii) The abid The -Co The Ag (c) (i) 8 but all (ii) Dative /	Diagram showing peptide bond: (-CHR-)CONH(-CHR-) Secondary: Hydrogen bonds (NOT between side chains* Diagram showing N-H···O=C Tertiary: Two of the following: • hydrogen bonds (diagram must show H-bonds other than the or β-pleated sheet – e.g. ser-ser) • electrostatic/ionic attraction, • Van der Waals/hydrophobic forces/bonds, • (covalent) disulphide (links/bridges) Suitable diagram of one of the above (for disulphide: S-S not S=S or SH-SH) (a) (i) Disulfide bond / group / bridge (1) (ii) The tertiary structure (1) (iii) The substrate will no longer bond to / fit into the active site (1) or shape of active site is changed (b) (i) Acid-base / proton donor / neutralisation / salt formation (1) (ii) The ability of the –CO ₂ H group to form hydrogen bonds (1) and ionic interactive the –CO ₂ H/–CO ₂ group is no longer able to interact with –NH ₂ /–NH ₃ * (1) The Ag* forms a strong bond with –COO* (1) (c) (i) 8 but allow 4O ₂ if specified as molecules (1) (iii) Dative / co-ordinate (1)

Q26.

(a) Sugar/deoxyribose, phosphate, base (or better)(not ribose) (1) [1] (b) Diagram showing sugar-phosphate backbone (chain) (1) Bases on side-chain (1) Base paired - A-T or G-C (1) H-bonds shown and labelled (1) [4] (c) mRNA, ribosome, tRNA all three correct (2) (mRNA first allow 1 mark) [2] (d) (i) $(4 \times 4 \times 4) = 64(1)$ (ii) START (or Met) - ser - arg - leu - asp - val (2) (5 correct order score (1)) (iii) Amino acid leu is changed to pro (1) [4] [Total: 11]

Q27.

6 (a) (i) $2H_2NCH_2CO_2H \rightarrow H_2NCH_2CONHCH_2CO_2H + H_2O$ [1] (ii) Skeletal formula required [1] [2] (b) (i) a helix [1] [1] β pleated sheet (ii) Students should choose one of the structures below For β pleated sheet: Need to show a helix Need to show two parallel 'zig-zag' with C=O - - - H-N strands with C=O - - - H-N between between turns them Whichever is chosen, overall structure [1] position of H bonds [1] [4]

(c)

amino acid residue 1	amino acid residue 2	type of bonding
-HNCH(CH ₂ CH ₂ CH ₂ CH ₂ NH ₂)CO-	HNCH(CH ₂ CH ₂ CO ₂ H)CO-	lonic bonds or hydrogen bonds
-HNCH(CH ₃)CO-	-HNCH(CH ₃)CO-	van der Waals'
-HNCH(CH₂SH)CO-	-HNCH(CH₂SH)CO-	Disulfide bonds
-HNCH(CH2OH)CO-	-HNCH(CH ₂ CO ₂ H)CO-	Hydrogen bonds

[4]

[Total: 10]

Q28.

8 (a)

traditional material	modern polymer used
Paper/cardboard/wood/leaves hessian/hemp/jute steel/aluminium	PVC in packaging
Cotton/wool/linen	Terylene in fabrics
Glass/china/porcelain/earthenware metal/leather	Polycarbonate bottle

 $3 \rightarrow 2$ marks, $2 \rightarrow 1$ mark

[2]

(b)	Rea	asons: Plastics/polymers pollute the environment for a long time do not decor	npose/			
. ,		biodegrade quickly	[1]			
		They are mainly produced from oil	[1]			
		Produce toxic gases on burning	[1]			
			max two			
	Stra	ategy 1: Recycle polymer waste / use renewable resources	[1]			
	Stra	ategy 2: Develop biodegradable polymers	[1]			
			[max 3]			
(-)	D1.//		F41			
(c)	PV		[1] [1]			
	Combustion would produce HCl / dioxins as a pollutant or					
	nylon/acrylic Combustion would produce HCN					
(d)	(i)	Polythene (or other addition polymer)	[1]			
	(ii)	Addition polymerisation	[1]			
		The polymer chains don't have strong bonds between them - easy to melt	[1]			
		Could be answered with a suitable diagram	[3]			
			[Total: 10]			

Q29.

(a) (i)	K, because it is the (only) one to contain nitrogen or it's an amino acid or because it contains CO ₂ H or NH groups	[1]
(ii)	molecule: J, polymer: RNA (not DNA) or molecule: L, polymer: starch, cellulose, glycogen or polysaccharide (not carbohydrate)	[1]
	(not called lyandle)	[2]
(b) (i)	Covalent bonding	[1]
(ii)	Hydrogen bonding	[1]
(iii)	lonic/electrovalent bonding or disulphide/–S–S– bonding or van der Waals' forces	[1] [3]
(c) (i)	Enzymes	[1]
(ii)	 change in pH increase in T (NOT decrease; T > 40 °C or "too high" are OK) addition of heavy metal ions or specific, e.g. Hg²+, Ag⁺. Pb²+ etc. any two bullet points [1] + [1]
	change in pH disrupts ionic bonds or metal ions disrupt ionic bonds or metal ions disrupt –S–S– bonds or heating disrupts hydrogen bonds	
		ne [1]
This cha	anges: the 3D structure or shape of the enzyme or the active site	[1] nax 4]
	То	tal: 9]

Q30.

6 (a)

bonding	structure involved	
disulfide bonds between parts of the chain	tertiary	
hydrogen bonds in a β-pleated sheet	secondary	
ionic bonds between parts of the chain	tertiary	
peptide links between amino acids	primary	

zero/one correct only \rightarrow [0], two correct only \rightarrow [1], three correct only \rightarrow [2] all four correct [3]

[3]

(b) labelled diagrams such as:

Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme
- . so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

 $2 \times [1]$

Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site
- · cannot be removed by increasing [substrate]

 $2 \times [1]$

[4]

A and C and other strand correct [1]
H-bonds labelled [1]
adenine AND cytosine [1]

[3]

[Total: 10]

Q31.

8 (a) (i) It could denature the enzyme or alter the 3D structure/tertiary structure/shape of active site.

[1]

(ii) condensation

[1] [2]

(b)

or correct diagram of the S isomer

[1]

[1]

(c) (i) (Acid present would) hydrolyse the ester (linkage)

[1]

(ii) (Hot water would) soften (the container)

[1]

[2]

(d) (i) ester linkage shown rest of repeat unit correct (ONE)

(ii) van der Waals' from CH₃/methyl group

- [1] permanent dipole-dipole from ester group [1]
- (iii) Accept any sensible physical property suggestion e.g. different melting point or different density or different solubility. [1]

[5]

[Total: 10]

Q32.

(a)	It h	as no chiral centre/asym	metric carbon/optical isomers or is not optically active	[1]
				[Total: 1]
(b)	(i)	structure – α- <u>helix</u> or β	-(pleated) sheet	[1]
		hydrogen (bonding) (fo	r either)	[1]
((ii)	any two pairs from the	following:	
	Γ	bonding	possible amino acid	
	va	an der Waals'	ala, gly, leu, ile, val, pro, phe, try, met]
	io	nic	asp, arg, glu, his, lys	
	di	sulfide bond	cysteine	
	hy	drogen bond	asn, asp, arg, gln, glu, his, lys, ser, thr, try, tyr	
		[1] + [1]	[1] + [1]	
		ndidates can identify am ormula of whole amino a	ino acids by name, three-letter abbreviation, formula of acid)	sidechain
				[Total: 6]
			need) polar/H-bonding/ionic (side chains) so as to r as part of their active site or to help their catalytic acti	vity [1]
				[Total: 1]
(d)	(i)	A – T C – G		[1] [1]
	(i) (ii)	C - G (start or met) - gly - se	er – leu – ala – ser – (stop) wn before gly, then it must be met. e 5 in bold	[1] [1]
((ii)	C - G (start or met) - gly - self an amino acid is show	wn before gly, then it must be met. e 5 in bold	[1]

Q33.

[Total: 5]

[TOTAL: 13]

8 (a) A monomers: H₂N-(CH₂)₆-NH₂ and HO₂C-(CH₂)₄-CO₂H or C*l*CO(CH₂)₄COC*l* [1]

Condensation or nucleophilic substitution or addition-elimination [1]

B monomer: H₂C=CHCH₃ [1]

Addition (NOT additional) [1]

C monomer: H₂N-(CH₂)₅-CO₂H or H₂N-(CH₂)₅-COC*l* or [1]

Condensation [1]

(b) (i) Need a statement from both columns for [1] mark.

(a)	(b)
more compact packing in A chains closer in A chains further apart in B	stronger (inter-chain) forces in A hydrogen bonding in A weaker (inter-chain) or van der Waals' forces in B B contains side-chain/branched chains

[1]

(ii) Polymer B – van der Waals'/London (dispersion) forces/induced-instantaneous/induced dipoles
 NOT just 'dipole' [1]

[Total: 2]

[TOTAL: 7]

Q34.

- 5 (a) (i) many monomers form a polymer
 - (ii) addition [1]
 - (iii) C=C/double/π bond is broken and new C-C single bonds are formed or double bond breaks and forms single bonds with other monomers

[1] [3]

[1]

(b) propenoic acid [1]

[1]

- carbon chain and CO2H [1] [1] at least one sodium salt
- (ii) 120° to 109(.5)° due to the change from a trigonal/sp2 carbon to a tetrahedral/sp3 carbon

[4]

(d) (i)

Any four:

hydrogen bond labelled water H-bonded to O through H atom δ +/ δ - shown on each end of a H-bond lone pair shown on O or C=O or H2O on a correct H-bond Na+ shown as coordinated to a water molecule

[3]

(ii) Solution became paler and Cu(2+) swapped with Na(+) or darker in colour and polymer absorbs water

[1]

[4]

(e) (i) alkene(1), amide(1) [2]
(ii) NH₃ [1]
(iii) H₂O [1]
(iv) HCl (aq)/H₃O+ and heat/reflux (not warm) [1]
or OH (aq), heat and acidify [5]

Q35.

6 (a) (i) six/6 (gsv, sgv, gvs, vgs, svg, vsg) [1] CH₃ H₃C_\ HO. OH NH 'NH two displayed peptide bonds [1] [1] correct formula of peptide (iii) valine (allow glycine) [1] (iv) any two of: hydrogen bonds and CO2H or OH or NH2 or CONH or CO or NH or CO2 ionic bonds and NH3+ or CO2van der Waals' and -CH3 or -H 2 × [1]

[6]

(b) (i) same shape/structure as substrate

(inhibitor) competes/blocks/binds/bonds to active site or substrate cannot bind to active site

[1]

[1]

(ii) binds with enzyme and changes shape/3D structure (of enzyme/active site)

[1]

(iii)

[1]

[4]

[Total: 10]

Q36.

Q37.

(a) (i) diamond and graphite [1] (ii) any three from diamond graphite colour black transparent/colourless electrical conductivity good conductor non-conductor hardness soft/slippery hard/non slippery density less dense than more dense than graphite diamond melting point lower higher 3 × [1] [4] (b) Because each carbon is only bonded to 3 others or is unsaturated/doubly-bonded/sp² or has 3 bonding locations (NOT forms only 3 bonds) [1] C60H60 [1] [2] (c) (i) Number of atoms carbon present = $0.001 \times 6.02 \times 10^{23} / 12 = 5.02 \times 10^{19}$ [1] (ii) Number of hexagons present = 5.02 × 1019 / 2 = 2.51 × 1019 Area of sheet = $690 \times 2.51 \times 10^{19} = 1.73 \times 10^{22} \text{ nm}^2$ [1] (iii) Graphene: Yes, since it has free/delocalised/mobile electrons [1] Buckminsterfullerene: No, (although there is delocalisation within each sphere) it consists of separate/simple/discrete molecules/spheres/particles, (so no delocalisation from one sphere to the next) or electrons are trapped within each molecule/sphere [4]

[Total: 10]