Q1.

Q2.

(e)
$$H_2N - CH_2 = \begin{bmatrix} O \\ II \\ C - NH \end{bmatrix} - CH_2 - CO_2H - CO_2H - CH_2 -$$

structure [1] at least one peptide group identified [1] [2]

(ii)
$$HO_2C$$
 CO_2H $H_2N-CH_2-CH_2-NH_2$ [1] [1]

[Total: 15 max 14]

[6]

Q3.

Q4.

(a)	hydrogen bonding		(1)	
	diag: NH ₂ CH ₂ CH ₂ OHOHCH ₂ CH ₂ NH ₂ or NH ₂ Cl (i.e. H-bond from OH group to either OH or NH ₂)	H ₂ CH ₂ OHNH ₂ CH ₂ CH ₂ OH	(1)	[2]
(b)	propylamine is more basic than phenylamine because lone pair on N is delocalised over ring in protonation)	phenylamine (so less available for	(1)	
	or the propyl group is electron-donating, so the lon	e pair is more available	(1)	[2]
(c)	$HOCH_2CH_2NH_2 + H^* \longrightarrow HOCH_2CH_2NH_3^*$ or $HOCH_2CH_2NH_2 + HC_1^2 \longrightarrow HOCH_2CH_2NH$ or $HOCH_2CH_2NH_2 + H_2O \longrightarrow HOCH_2CH_2NH$ (reaction with any acceptable Bronsted acid accep	3 ⁺ OH⁻		[1]
(d)	(i) X is CH ₃ CH ₂ CN		(1)	
	(ii) step 1 is KCN in ethanol, heat [HCN negate step 2 is H ₂ +Ni / Pt or LiAlH ₄ or Na in ethanol		(1) (1)	[3]
(e)	ethanolamine: Na or $Cr_2O_7^{2-}/H^+$ or MnO_4^-/H^+ or $PCl_3/PCl_5/SOCl_2$ (1	effervescence / bubbles product colour turns from orange to gree purple colour disappears steamy fumes		
	phenylamine: Br ₂ (aq) or HNO ₂ / H* at T<10°C, then phenol in NaOH (1	decolourises / white ppt formed coloured dye formed	1)	[4]

[Total: 12]

Q5.

(a) (due to the) strong N=N bond [1] [1] (b) (i) Any balanced equation forming a stable nitrogen oxide e.g. N₂ + O₂ → 2NO $N_2 + 2O_2 \longrightarrow 2NO_2$ [1] (ii) in lightning [1] in an engine/combustion of fuels (or a specific example) [1] (iii) (NOx produces) acid rain or forms (photochemical) smog [4] (c) (base is a) proton acceptor [1] basicities: ethylamine > NH₃ > phenylamine [1] ethylamine (more basic) due to electron donating ethyl group [1] [1] **[4]** phenylamine (less basic) due to lone pair being delocalised into the ring (d) (i) step 1: nucleophilic substitution [1] step 2: hydrolysis [1] (ii) step 1: KCN (in ethanol) and reflux [1] step 2: H₃O⁺/ aqueous acid and reflux [1] (iii) Tis NH₂ [1] W is [1] [6]

Q6.

[Total: 15]

- 5 (a) (i) Br₂(aq) (or solution or in an inert solvent) [light or AiCl₃ etc negates] (1)
 - (ii) G is

H is

(iii) amide [NOT peptide] (1)

- [4]
- (b) IV: H⁺/HCI + NaNO₂ or HNO₂/nitrous acid (1) 0°C≤T≤10°C ["REFLUX" negates] (1)

V:

in NaOH(aq) (1) [4]

(c) To increase its solubility in water or to increase binding to food components (1)

due to ionic solvation or more oxygen atoms to H-bond to H₂O/glucose etc (1)

[2]

[Total: 10]

Q7.

```
(c) (i) catalyst
                                                                                                               [1]
        (ii) CH3CH2CO2H + C12 ----- CH2CHC1CO2H + HC1
                                                                                                               [1]
       (iii) nucleophilic substitution NOT addition/elimination
                                                                                                               [1]
       (iv) M_r(CH_3CH_2CO_2H) = 74 M_r(CH_2CH(NH_2)CO_2H) = 89
                                                                                                               [1]
              :. 10.0 g should give 10 x 89/74 = 12.03 g
             :. percentage yield = 100 x 9.5/12.03 = 79%
                                                                                                           ecf [1]
                                                                                        ([2] for correct answer)
                                                                                                               [5]
   (d) *NH3-CH(CH3)-CO2
                                                                                               correct atoms [1]
        Allow charges on H of H<sub>3</sub>N, and -COO but not -C-O-O
                                                                                             correct charges [1]
                                                                                                               [2]
                                                                                                     [Total: 15]
Q8.
   7 (a) HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub>
                                                                                                             [1]
             at 50 - 60°C (or ≤ 60°C) not dilute or (aq)
                                                                                                              [1]
                                                                                                             [2]
        (b) 2H_2SO_4 + HNO_3 \longrightarrow 2HSO_4^- + H_3O^+ + NO_2^+
              (allow equ. with only one H2SO4, giving H2O)
                                                                                                             [1]
                                                                                                             [1]
        (c)
                                                                               CO<sub>2</sub>H
                                    ÇH<sub>3</sub>
                                            CI
                                                            H is
             G is
                                                                                                        [1] + [1]
                            C12 + A1C13/accept other halogen carriers NOT aq, nor u.v.
             reaction I:
             reaction II:
                            KMnO<sub>4</sub> + H<sup>+</sup> NOT HCl nor HNO<sub>3</sub>
             reaction III:
                            KMnO4 + H+ NOT HC1 nor HNO3
             reaction IV:
                            Cl2 + AlCl3/accept other halogen carriers NOT aq, nor u.v.
                                                                                                  both I + IV [1]
                                                                                                 both II + III [1]
                                                                                                             [4]
                                                                                                      [Total: 7]
```

Q9.

7	(a)	pro	tein: polymer of amino acids / amino acids are monomers.	[1]
	(b)	dia at l	[1] [1] [1]	
	(c)		d/H ⁺ /HC <i>l</i> etc. <i>or</i> alkali/OH ⁻ /NaOH NOT conc H ₂ SO ₄ or any HNO ₃ at/boil/reflux if temp given >90°C	[1] [1]
	(d)	(i)	six	[1]
		(ii)	$M_t = 3 \times 75 + 2 \times 89 + 2 \times 165 - 6 \times 18$ = 625 (allow [1] for $M_t = 733$) (also ecf from (i))	[1] [1]
				[Total: 9]

Q10.

5	(a)	(i)	I: KMnO ₄ heat with H ⁺ or OH ⁻ II: SOCl ₂ or PCl ₅ or PCl ₃ (NOT aq)	[1] [1] [1]
		(ii)	-[-CO-C ₆ H ₄ -CO-NH-C ₆ H ₄ -NH-]- (Peptide bond must be displayed for minm)	[1] [4]
	(b)	(i)	CH ₃ NHCO-C ₆ H ₄ -CONHCH ₃ (1 mark for each end)	[1] + [1]
		(ii)	or the polymer -[- OCH ₂ CH ₂ O-CO-C ₈ H ₄ -CO-]-	for [1] for [2] max 3]
	(c)	(i)	Cl ⁻⁺ NH ₃ -C ₆ H ₄ -NH ₃ ⁺ Cl ⁻ (1 mark for each end)	[1] + [1]
		(ii)	$H_2N-C_6H_2Br_2-NH_2$ or $H_2N-C_6H_2Br_3-NH_2$ or $H_2N-C_6Br_4-NH_2$	[1] [3]
	(d)	I:	HNO ₂ (or NaNO ₂ + HCVH ₂ SO ₄) at T < 10°C	[1] [1]
		II:	m-prop-2-yl phenol, (CH ₃)₂CH-C ₈ H ₄ OH + NaOH(aq)	[1] [1] [4]
	(e)	(i)	A species having positive and negative ionic centres / charges, with no overall ch	arge [1]
		(ii)	-O ₂ C-C ₈ H ₄ -NH ₃ ⁺	[1] [2]
			П	tal: 161

Q11.

6	(a)	L is CH ₃ CH ₂ Br M is CH ₃ CO ₂ H	
		N is CH ₃ CH ₂ NH ₂	
		Q is CH ₃ CH ₂ CO ₂ H P is CH ₃ CH ₂ CH ₂ NH ₂	
		J is CH ₃ CH ₂ CONHCH ₂ CH ₃ K is CH ₃ CONHCH ₂ CH ₂ CH ₃	[7]
		K 15 OF 13 OF 11 OF 12 OF 13	[7]
	(b)	reaction I: KCN, heat NOT H* OR HCN aq negates	[1] [1]
		reaction II: SOCl ₂ or PCl ₅ or PCl ₅ BUT aq negates reaction IV: H ₂ + Ni or LiAlH ₄ or NaBH ₄ NOT Sn + HCl	[1] [1]
			[3]
	(c)	reaction IV: reduction	[1]
		reaction VI: nucleophilic substitution or condensation reaction	[1] [2]
	(d)	(i) amide	[1]
		(ii) amine	[1] [2]
			Total: 14

Q12.

```
6 (a) (i) Br2 (ignore solvent, but do not credit AICl3 or HCl or light) (1)
         (ii) curly arrow from C=C to Br (1)
              another one breaking Br-Br bond. (1)
              correct intermediate cation and Br produced (not Br8-) (1)
                                                                                                      [max 3]
    (b) B is NH2CH2CH2NH2 (1)
         C is NCCH2CH2CN (1)
         E is CICOCH2CH2COCI (1)
                                                                                                            [3]
         (Allow (CH2)2 or C2H4. Allow correct atoms in any order on LHS but order must be correct on
         RHS)
    (c) reaction II: heat, dilute H<sup>+</sup>(aq) or HCl(aq) or HCl(conc) or H<sub>2</sub>SO<sub>4</sub>(aq) (1)
         reaction III: H2 + Ni (or other named catalyst) or LiAlH4 or Na in ethanol (1)
                                                                                                            [2]
    (d) NH<sub>4</sub>+(1)
                                                                                                            [1]
    (e) (i) [-NHCH2CH2CH2CH2NH-COCH2CH2CO-] (1)
              (allow (CH2)4 and (CH2)2)
              (not dimer, needs bonds both ends)
         (ii) HCI(1)
                                                                                                            [2]
    (f) (i) [H^+] = 10^{-pH} = 10^{-2.8} = 2.51 \times 10^{-3} \text{ (mol dm}^{-3}\text{) (1)}
         (ii) Ka = [H^+]^2/c = 6.31 × 10<sup>-5</sup> (mol dm<sup>-3</sup>) (allow ecf from (i)) (1)
                                                                                                            [2]
                                                                                                   [Total: 13]
```

Q13.

3 (a) (i) E is CH₃CH(NH₂)CN

[1]

(ii) C₆H₅CH₂CHO

- [1] [2]
- (b) (i) a polymer/polypeptide of amino acids, (joined by peptide bonds)
 (allow 'chain of amino acids' but not 'sequence': the idea of 'many' has to be conveyed)
 - [1]

(ii)

peptide bond shown in full (C=O) in an ala-ala fragment in a chain two repeat units

[1] [1]

Allow peptide bond shown in full (C=O) in a dipeptide ala-ala for 1 mark

[3]

(c) (i) HCl or H₂SO₄ or NaOH or H⁺ or OH⁻ reagents

[1]

+ heat and H₂O/aq (allow H₃O⁺).
If T is quoted, 80 °C < T < 120 °C. NOT warm. conditions

[1]

(ii)

(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions [1] + [1]

[max 3]

(ii)

compound	zwitterion
H ₂ N-CO ₂ H	H_3N CO_2
NHCH ₃	O NH xCH ₃
HO_SO ₂ NH ₂	⊖ ₀ NH ₃

[3] [4]

[1]

- (e) (i) A buffer is a solution whose pH stays fairly constant or which maintains roughly the same pH or which resists/minimises changes in pH when small/moderate amounts of acid/H* or alkali/OH* are added [1]
 - (ii) $NH_2CH(CH_3)CO_2H + H(Cl) \longrightarrow {}^{+}NH_3CH(CH_3)CO_2H (+ Cl)$ [1]
 - (iii) blood contain HCO_3^- (or in an equation) [1] which absorbs H^+ or equn $H^+ + HCO_3^- \longrightarrow H_2CO_3$ ($H_2O + CO_2$) or absorbs OH^- or equn $OH^- + HCO_3^- \longrightarrow CO_3^{2^-} + H_2O$ [1]
 - (iv) $[CH_3CO_2Na] = 0.05 [CH_3CO_2H] = 0.075$ [1] pH = 4.76 + log (0.05/0.075) = 4.58 or 4.6 [7]

[Total: 19]

Q14.

(ii) e.g.
$$C_2H_5NH_2 + H(C_1^T) \longrightarrow C_2H_5NH_3^+ (C_1^T)$$
 [1]
or $C_2H_5NH_2 + H_3O^+ \longrightarrow C_2H_5NH_3^+ + H_2O$
or $C_2H_5NH_2 + H_2O \longrightarrow C_2H_5NH_3^+ + OH^-$ etc

e.g.
$$C_2H_5NH_2 + CH_3Br \longrightarrow C_2H_5NHCH_3 + HBr$$

or $C_2H_5NH_2 + CH_3COCI \longrightarrow CH_3CONHC_2H_5 + HCI$ [1]

- (iii) the lone pair (on N) in phenylamine overlaps with ring or is delocalised electron density of N is reduced or N becomes more positive or lone pair is less available
- [1]

(iv)

[1] + [1]

[7 max 6]

- (b) (i) NaNO₂ + HCl/H⁺ or HNO₂ (HNO₃ or NO₃⁻ negates this mark) [1] -10°C < T ≤ 10°C or less than 10°C' [1]
 - (ii) alizarin yellow R:

$$O_2N$$
 O_2N
 O_2N

[1] + [1]

methyl orange:

and

(NH2 alternatives as above)

[1] + [1]

- (iii) makes the molecule (more) hydrophilic/soluble in water (due to H-bonding or ionic solvation)
 - or increases its melting point

[1] [Total: 7]

Q15.

6 (a) A (Bronsted-Lowry) acid is a proton donor.

- [1] [1]

(b) (i)

amino group

- at least one H2O molecule in the right orientation: attached to -CO2H
 - attached to -NH2 [1]
- lone pair (on oxygen in H2O or -CO2H or on nitrogen) shown at least once on a H-bond
- δ + and δ shown at least once (at each end of the same H-bond) [1]
- (ii)

[1] [5]

(c) allow either S_N1 or S_N2

any three of δ+ and δ- shown in C-C1

curly arrow from lone pair on NH3 to (δ+) carbon

curly arrow from C-Cl bond to Cl

5-coordinate transition state or carbocation intermediate if S_N1, with

correct charge

- [3]
 - [3]

(d) lysine @ pH 1: *NH3(CH2)4CH(NH3*)CO2H aspartic acid @ pH 12: O2C CH2 CH(NH2)CO2

- [1] [1]
- [2]

(e) (i) 6 (six) [1]

(ii) either H₂NCH(CH₃)CO-NHCH(CH₂OH)CO₂H
or H₂NCH(CH₂OH)CO-NHCH(CH₃)CO₂H [2]

(f) (i) Compounds have the same structural formula but
different (spatial) arrangement/position or orientation of atoms in space [1]

(ii) J [1]

HO₂C

[Total: 17]

[1] [3]