Q1.

(a) Cl₂ + light/heat (aq negates) [1]

1

Cl₂+AlCl₃/FeCl₃/Fe etc. (aq negates) [1]

1

(c)

[1]

1

NaOH +I2(+ aq) (or I + OCI + aq) (d) [1]

[1]

- C: (pale) yellow ppt.
- D: no reaction (both)

2

(e) mass of CN needed = 0.03 x 60 = 1.8g [1]

M_r = 154.5, :. amount = 1.8/154.5 = 0.0117 (mol) (allow 0.012) ecf [1]

2

(f) (i) increasing ease: H < D < G

[1]

- (ii) chlorine on the aryl ring is very inert or strong C-Cl bond or overlap between Cl lone pair and π bond on ring (OWTTE) [1]
 - chlorine on C=O is reactive because of highly δ+ carbon atom bonded to electronegative O and C1 (OWTTE) [1]

3

Q2.

5 (a) (i)
$$Cl_2$$
 + $AlCl_3$ etc. (UV or aq negates) [1]

(iii)
$$HNO_3 + H_2SO_4$$
 [1] conc. $+50^{\circ} < T < 60^{\circ}$ [1]

(b) (i)
$$A^+ = NO_2^+$$
 or nitronium ion [1]

[1]

or

[1]

(ii)

CI CI

CO₂H

[1]

Total = [8]

Q3.

```
(i)
        Cl2(aq) AlCl3 or UV negates
                                                                                    [1]
(ii)
        Electrophilic substitution or addition-elimination
                                                                                    [1]
        Nucleophilic substitution or electrophilic substitution on OH group
        If neither mark is awarded, could give "salvage" mark for
        substitution x2
                                                                                    [1]
(iii)
        Either: add Br<sub>2</sub>(aq)
                                     phenol decolourises it, or gives a white ppt.
        Or.
                  add FeCl<sub>3</sub>(aq) phenol give a purple colour
        or.
                  add NaOH(aq) phenol dissolves
                  add UI solution phenol goes yellow/orange (A stays green)
        or.
        Or.
                  add "diazonium" to solution in OH"
                                     phenol gives orange/red colour
        (in each case, A give no reaction)
                  add Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>/H<sup>+</sup>/warm A changes colour from orange to green
        Or.
                  add MnO<sub>4</sub>/H<sup>+</sup>/warm A changes from purple to colourless
        or.
                  add PCls/POCls/PCls/SOCl2
                                                            A gives fumes
        Or.
                  add CH<sub>3</sub>CO<sub>2</sub>H + conc. H<sub>2</sub>SO<sub>4</sub>
                                                            A gives fruity smell
        Or.
        (in each case, no change with phenol)
                                        Test + reagents [1] Both observations [1]
```

Part (c): [5]

Q4.

(c)

Q5.

Q6.

(a)	II: III: IV:	Cl_2 + AlC l_3 /Fe/etc Cl_2 + hf KMnO ₄ + H ⁺ SOC l_2 or PC l_5 /PC l_3 (for I, II and IV, dedu (for I, mention of hf I	ict a mark ([1] or	nly) for one or more n	nentions of (aq))	[1] [1] [1]	
				both, deduct [1] mar	k only)		[4]
(b)		electrophilic substitu oxidation <i>or</i> redox	tion (NOT oxygenat	ion)		[1] [1]	[2]
(c)	step V	6 ₆ H ₅ -CH ₂ CN /: NaCN/KCN heat (<i>or</i> 50-80°C) /I: LiA <i>1</i> H ₄ <i>or</i> H ₂ + N				[1] [1] [1] [1]	[4]
(d)		compound		eagent]		
		E	no reaction	no reaction	-		
		F	no reaction	C ₆ H ₅ CH ₂ OH			
		G	C ₆ H ₅ CO ₂ H	C ₆ H ₅ CO ₂ ⁻Na ⁺			

6 x [1] [6] [Total: 16]

Q7.

(c) Delocalised ring of electrons (in benzene) is stable, (so is re-formed in second step in benzene.)

or electrons in the ethene π bond are localised/more available for reaction with electrophiles

[1] [1]

Cotal: 71

Q8.

6

[deduct [1] mark if ring circle omitted more than once]

[allow ecf for E from structure of D]
[allow ecf for B from structure of A]
[allow -CO₂ for E]

[Total: 5]

[5]

Q9.

(allow + charge on either N) (allow double or triple bond)

[1]

(phenylazo group must be at 4-position to -OH) (N=N must be double bond, not triple)
[1]

[2]

[Total: 13]

Q10.

7

[6]

[Total: 6]

Q11.

(d)

(1) and
$$CH_3CO_2H$$
 (1)
$$HO_2C \longrightarrow CO_2H$$
 (1)

$$co_2H$$
 or co_2H or co_3H

[5]

(e) (i) (CH₃)₂C(OH)-CH₂OH

(1)

(ii) reaction I: (cold dilute) KMnO₄ ("cold" not needed, but "hot" or "warm" negates) (1) reaction II: Cr₂O₇²⁻ + H⁺ + **distil** (1) [3]

Q12.

- 5 (a) (i) because the carbons are sp² / trigonal planar / bonded at 120° or are joined by π bonds / orbitals (1)
 - (ii) because the $\underline{\pi}$ electrons / double bonds are delocalised / in resonance or electrons are evenly distributed / spread out (1) [2]
 - (b) (i) $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^$ $or HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^ or \rightarrow H_2O + NO_2^+ + HSO_4^-$ (1)
 - (ii) electrophilic substitution (1) mechanism:

- curly arrows from benzene to NO₂⁺, **and** showing loss of H⁺ (1) correct intermediate (with "+" in the 'horse-shoe') (1) [4]
- (c) $Cl_2 + A/Cl_3 / FeCl_3 / Fe / Al / I_2$ (aq or light negates this mark) (1) [1]

[Total: 15]

Q13.

5 (a)

transformation	reagent + conditions
$C_2H_4 \rightarrow C_2H_5CI$	HC <i>I</i> , no light or catalyst
$C_2H_5OH \rightarrow C_2H_5C1$	conc $HCl + ZnCl_2$ or $SOCl_2$ or PCl_3 or PCl_3 and heat
$C_2H_6 \rightarrow C_2H_5C1$	CI ₂ + light
$C_2H_4 \rightarrow C_2H_4CI_2$	Cl ₂ , no light or catalyst
CH₃CO₂H → CH₃COCI	SOC 12 or PC 15 or PC 13 and heat
H ₃ C	CI2 + AICI3
-CH ₃	C1 ₂ + light or heat

[6]

(b) (i) production of NO_2^+ : $2H_2SO_4 + HNO_3 \rightarrow 2HSO_4^- + H_3O^+ + NO_2^+$ [1] (accept $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + H_2O + NO_2^+$)

curly arrow from ring to NO₂⁺ and from C-H bond to ring correct intermediate, including charge in the right place

Note charge area must be more than half ring [1]

(ii) C is C₆H₅CO₂H [1]

(iii) step 1: reagent is hot acidified or alkaline KMnO₄ [1] step 2: reagent is Br₂ + FeBr₃/A iC l₃ etc. (H₂O or light negates) [1]

(If C is given as 3-bromotoluene, then allow the last [2] marks if steps 1 and 2 are reversed.)

[Total: 12]

Q14.

(c) H is
OH
NO₂
[1]

reagents & conditions: step 1 dilute HNO₃ (dilute, not just 'aq'. H₂SO₄ negates) [1] step 2 Sn/SnCl₂/Fe + HCl or H₂ + Ni/Pd (NOT H₂ + Pt. NOT LiAlH₄ or NaBH₄) [1] step 3 CH₃COCl or (CH₃CO)₂O ('aq.' negates) [1]

[Total: 13]

[4]

[5]

Q15.

3. (a) (i) C₁₆H₁₀N₂O₂ [1] [2] [3] (ii) ketone, alkene, amine, aryl (benzene/arene/phenyl) (any 3) (b) (i) reduction or redox [1] (ii) NaBH₄ or LiAlH₄ (NOT H₂ + Ni) [1] [2] (c) 1. 2,4-DNPH [1] red/yellow-orange/orange ppt. [1] no reaction 2. Na metal [1] no reaction gas given off/fizzing [1] or PCls/SOCl2 [1] no reaction steamy fumes/fizzing [1]

or PCl3 + warm

2 x "no reaction"

(e)

(d) (i) $H_{r} = 262$, so $2.5 \text{ g} = 2.5/262 = 9.54 \times 10^{-3} \text{ mol}$ [1] (ii) $H_{r} = 262$, so $2.5 \text{ g} = 2.5/262 = 9.54 \times 10^{-3} \text{ mol}$ [1] so volume of $H_{2} = 9 \times 24 - 9.54 \times 10^{-3} = 2.06 \text{ dm}^{3} (2060 \text{ cm}^{3})$

[Total: 16]

misty/white fumes

[1] [5]

[3]

must be linked to "correct reagent"

Q16.

5 (a) (i) OCH₃ [1] (ii) Na metal NaOH or Fizzes/gas given off with phenol or phenol dissolves (anisole doesn't) [1] C₆H₅OH + Na → C₆H₅ONa + ½ H₂ or $C_6H_5OH + OH^- \rightarrow C_6H_5O^- + H_2O$ [1] ONa + H₂O or [1] [1] [1] (neutral) iron(III) chloride Solution goes purple/violet $3C_6H_5OH + FeCl_3 \rightarrow Fe(OC_6H_5)_3 + 3HCl$ [4] (b) (i) D E [1] + [1] (ii) step 2: Sn + HCl NOT LIAIH4, NaBH4 [1] conc. + reflux (warm is insufficient) [1] step 4 is conditional of structure E step 4: warm + in H2O [5 max 4] (c) (i) NH₂ ÓН ÓН H G F must be an amide [4] (ii) reaction 1: H2 + Ni or LiA H4

[Total: 14]

[1] [6]

reaction 2: heat + aqueous HC1

Q17.

- 3 (a) (i) ketone, alcohol, alkene, arene/aryl/benzene/phenyl. any three [2] (if more than 3 are given, mark the <u>first 3</u> the candidate has written)
 - (ii) (2,4-)DNPH/Brady's or FeC l_3 (aq or neutral) or Br $_2$ (aq) [1] Lawsone \Rightarrow orange/red, or purple/violet with \mathbf{A} , or white ppt with \mathbf{A} , (not yellow) ppt and $\mathbf{A} \Rightarrow$ nothing or and nothing with Lawsone or and decolourises with Lawsone
 - (iii) NaBH₄ or LiAlH₄ or SnCl₂ or Na + ethanol or any suitable reducing agents with E^a < 0.2V, e.g. SO₂. NOT H₂ + Ni etc. [1]
 - (One of the Br atoms in either formula could be an OH group instead.

 Br on the benzene ring negates this mark)

 [1]
 - (b) (i) $E_{col} = 1.33 0.36 = (+)0.97 (V)$ [1]
 - (ii) $Cr_2O_7^{2-} + 8H^4 + 3C_{10}H_8O_3 \rightarrow 2Cr^{3+} + 7H_2O + 3C_{10}H_8O_3$ 3:1 ratio [1] balancing [1]
 - (iii) = $0.05 \times 7.5/1000 = 3.75 \times 10^{-4} \text{ mol}$ [1] $n(\mathbf{A}) = 3 \times 3.75 \times 10^{-4}$ = $1.125 \times 10^{-3} \text{ in } 20 \text{ cm}^3$ [A] = $5.63 \times 10^{-2} \text{ mol dm}^{-3}$ (allow 5.6, 5.62, 5.625 etc.) [1]

(c) (i) compound C is

(ii) compound D is

(iii) mechanism: 3 curly arrows in B or correct intermediate anion [1] a curly arrow from an O or an oxygen with a lone pair to the carbon of the C=O group in CH₃COCI, and a second curly arrow breaking the C-CI bond

[4 max 3]

[1]

[Total: 14]

Q18.

5 (a)

	H₂O	OH OH	ÇO ₂ H	OH
Na	H ₂	H ₂	H ₂	H ₂
KOH(aq)	Х	х	х	х
Na ₂ CO ₃ (aq)	Х	х	CO ₂	х

[5]

(b) (i)	(CH ₃) ₃ C–C1 (any unambiguous structure or name)	[1]
(ii)	reduction or hydrogenation	[1]
(iii)	either CH ₃ CO ₂ H and heat with (conc) H ₂ SO ₄ or CH ₃ COC <i>l</i>	[1]
(iv)	reflux	[1]
	dilute HC1	[1]

(c) (i)

reagent and conditions	product with A	product with B
Br ₂ (aq)	Br OH Br C(CH ₃) ₃	no reaction
heat with HBr	no reaction	Br C(CH ₃) ₃
pass vapour over heated A & O ₃	no reaction	C(CH ₃) ₃
heat with acidified K ₂ Cr ₂ O ₇	no reaction	Ç(CH ₃) ₃

[6]

(ii) either: Cr₂O₇²⁻/H⁺: no observation with A and goes from orange to green with B. or.

or:
Br₂(aq): white ppt. with **A and** no observation/ppt with **B**

[1] [7]

[Total: 17]

Q19.

- (a) (i) HNO₃ + H₂SO₄ [1] conc (both acids) and 30°C < T < 60°C or warm [1]
 - (ii) dilute HNO₃ or HNO₃(aq) and room temp. (allow T ≤ 30°C) [1] [3]
 - (b) (allow intermediate from methylbenzene)

A

[1] [1]

- (c) Sn/tin (or SnCl2, Fe) + HCl (NOT H2SO4 or H+, Zn, or LiAlH4.) [1] [1]
- (d) (i) or NH3+ or-ONa or -O NOT-NaO Br

В [1] + [1]

(ii) NaNO2 + HCl or H2SO4 or H+ or HNO2 [1]

T ≤ 10°C [1] [4 max 3]

- (e) (i) amide [1]
 - (ii) M_r = 108+11+14+16 = 149 %N = (14 x 100)/149 = 9.4% [1]
 - (iii) NHCOC₂H₅ [1] [3]

[Total: 11]

Q20.

- 5 HNO3 + H2SO4 (a) conc acids (aq negates) and T between 50 - 60° C
 - (b) electrophilic substitution [1]
 - NO2 (c) structure;

look for the "horseshoe" of delocalised electrons (somewhere around the rest of the ring, away from the sp3 carbon atom) and the (+) charge somewhere on/near the horseshoe (NOT on the sp3 carbon. A (+) charge on H or NO2 negates [1]

- $X^{+} = NO_{2}^{+}$ $Z^{+} = H^{+} (NOT H_{3}O^{+})$ (ii) [1]
- (iii) [1] (penalise once only for absence of (+) signs)
- $2 \text{ H}_2 \text{SO}_4 + \text{HNO}_3 \longrightarrow \text{NO}_2^+ + \text{H}_3 \text{O}^+ + 2 \text{HSO}_4^-$ [[1] for species, [1] for balancing. Allow [1] for: the acids (iv)
- CH3 (d) (i)
 - [1]

Ignore alkyl groups - these can be "R" or even incorrect. Allow NH3+ or NH3Cl instead of one or more NH2 groups [1] Total: 10

Q21.

(1) [4]

© University of Cambridge Local Examinations Syndicate 2003

Page 3		Mark Scheme	Syllabus	Paper
		A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	4
(c)	(i)	acidity: G > E > F		(1)
	(ii)	only G reacts/gives off CO2 with Na2 CO3		(1)
		E and G both dissolve in NaOH(aq)		(1) [3] Total: 9

Q22.

7 (a) orange colour disappears/bromine is decolourised (NOT discoloured, or goes clear)
[1]

(white) precipitate/solid/crystals is formed

[1] 2

Paper

Syllabus

© University of Cambridge International Examinations 2005

Mark Scheme

		9	A LEVEL – NOVEMBER 2004	9701	4				
(b)	e.g.	add	neutral FeC l_3 (aq) – violet colour with phenol						
	or	add universal indicator - red/orange colour with phenol							
	or	add	Na metal – fizzing/H ₂ evolved with phenol						
	or	add	NaOH(aq) to the pure compound - phenol would dissolve	ė					
	or	add	H* (aq) to the pure compound - phenylamine would disso	olve					

or add HNO₂ at 5 °C, followed by an alkaline solution of phenol – phenylamine would produce a coloured (orange) dye [1] 1

add HNO2 at room temperature - phenylamine would produce gaseous N2.

(c) IV KMnO₄ + heat [1]

 $V = HNO_3 + H_2SO_4$ [1] (both) conc^d and at 50 °C < T < 60 °C [1]

VI Sn + HCl (NOT LiAlH₄) [1] 4

Q23.

Page 5

or

```
4 (a) HO-C_6H_4-NH_2 + 2AgBr + 2OH \rightarrow O=C_6H_4=O + H_2O + NH_3 + 2Ag + 2Br
                                                                                                                                              [1]
            (or C<sub>6</sub>H<sub>7</sub>NO)
                                                                (or C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>)
                                                                                                                                                  1
      (b) rodinol should be less basic than NH3
                                                                                                                                                 [1]
            because the lone pair on N is delocalised over/overlaps with the aryl ring
                                                                                                                                                [1]
                                                                                                                                                  2
      (c) E is H<sub>2</sub>N-C<sub>6</sub>H<sub>4</sub>-O Na<sup>+</sup> or
                                                              H<sub>2</sub>N-C<sub>6</sub>H<sub>4</sub>-ONa
                                                                                                                                                 [1]
            F is HO-C<sub>6</sub>H<sub>4</sub>NH<sub>3</sub><sup>+</sup> CI
                                              or
                                                                HO-C<sub>6</sub>H<sub>4</sub>NH<sub>3</sub>C<sub>1</sub>
                                                                                                                                                [1]
            G is HO-C<sub>6</sub>H<sub>2</sub>Br<sub>2</sub>-NH<sub>2</sub> up to HO-C<sub>6</sub>Br<sub>4</sub>-NH<sub>2</sub> (ignore orientation)
                                                                                                                                                [1]
                                                                                                                                                  3
      (d) (i) HNO<sub>3</sub>(aq) or dil HNO<sub>3</sub>
                                                    (NOT conc., and NOT + conc. H<sub>2</sub>SO<sub>4</sub>)
                                                                                                                                                [1]
            (ii) reduction
                                                                                                                                                [1]
            (iii) Sn + HCI(aq)
                                                                                                                                                [1]
                                                                                                                                                  3
      (e) (i) phenol, amide
                                                                                                                                          [1] + [1]
            (ii) CH3COC1 or (CH3CO)2O
                                                                                                                                                 [1]
                                                                                                                                                   3
                                                                                                                                        total: 12
```

Q24.

- 4 (a) (i) light or heat [aq or AICl3 negates] (1)
 - (ii) NaOH/KOH/alkali/OH (1) in alcohol/ethanol + heat [aq negates] (1)
 - (iii) [-CH2CH(C6H5)-] [C-C not needed, but C=C is wrong] (1)
 - (iv) CH₂=CHCN [C=C is needed here] (1) [5]
 - (b) (i) /OH (aq)/NaOH(aq)/aqueous alkali/ + heat [aq or solution or dil etc. needed] (1)
 - (ii) (pale) yellow ppt/crystals (NOT orange or orange-yellow) (1)
 - (iii) C/D is $C_6H_5CO_2Na \checkmark D/C$ is $CHI_3 \checkmark (1) + (1)$ [4]
 - (c) (i)

- (ii) needs AlCl3 or similar [light or aq negates] (1)
- (iii) (hot) $KMnO_4(aq) + OH \text{ or } H^+ [NOT Cr_2O_7^2]$ (1) [3]

[Total: 12]

Q25.

Q26.

```
(a) G is 4-nitromethylbenzene
                                                                                                        [1]
[1]
             H is 4-nitrophenylethanoic acid
                      Cl<sub>2</sub> + light or heat (T~100 °C)
        (b) step II:
                                                             (AIC b or aq. negates)
                                                                                                         [1]
             step III: KCN (in ethanol) + heat (T~75 °C)
                                                             (HCN negates)
                                                                                                         [1]
             step V: Sn or Fe + HCl (+ heat)
                                                                                                         [1]
                                                                                                  [Total: 5]
Q27.
  4 (a) (cyclohexanol & phenol) hydrogen bonding to (solvent) water molecules
                                                                                                         [1]
                                                                                                        [1]
[2]
           due to OH group
                                                                                                        [1]
[1]
       (b) phenoxide anion is more stable (than cyclohexoxide) / OH bond is weaker
           due to delocalisation of charge / lone pair over the ring
                                                                                                        [2]
      (c)
```

		·	
reagent	product with cyclohexanol	product with phenol	
Na(s)	RONa or RO⁻Na⁺	ArONa or ArO⁻Na⁺	
NaOH(aq)	no reaction	ArONa or ArO⁻Na⁺	
Br ₂ (aq)	no reaction	tribromophenol no reaction	
I₂(aq) + OH⁻(aq)	no reaction		
an excess of acidified Cr ₂ O ₇ ²⁻ (aq)	cyclohexanone	no reaction	

five correct products $5 \times [1]$ five correct "no reaction"s [2] (4 correct = [1]; 3 correct = [0])

(d) either $Br_2(aq)$: no reaction with cyclohexanol; decolourises or white ppt with phenol or $Cr_2O_7^{2-} + H^+$: turns from orange to green with cyclohexanol; no reaction with phenol

correct reagent chosen and the correct "no reaction" specified [1]

correct positive observation [1]

[-]

[Total: 13]

Q28.

5 (a)

compound	all carbon atoms can be coplanar	not all carbon atoms coplanar
Α	V	
В		1
С	~	
D	V .	
E	~	

all 5 correct [3] (4 correct: [2], 3 correct: [1]. <3 correct: [0])

(b) reaction I: Cl₂ + AlCl₃ / FeCl₃ / Fe / or bromides of Al or Fe [1] reaction II: Cl₂ + heat / light / uv / hf [1]

(c) (i) H is C₈H₅CH₂Cl [1]

(ii) reaction III: KMnO₄ + heat (+ OH⁻) [1]
 reaction V: NaOH in water + heat
 reaction VI: conc H₂SO₄ + heat [1]

(iii) reaction III: oxidation [1]
 reaction V: hydrolysis *or* nucleophilic substitution [6]

[Total: 11]

Q29.

- 5 (a) (i) ester (1)
 - (ii) H is nitrobenzene structure needed here (1)
 J is phenyldiazonium chloride structure needed here (1)
 - (iii) step 2 Sn/Zn + HCl/H₂ + named cat / NaBH₄ / LiA IH₄ / Na + ethanol (1) step 3 HNO₂/NaNO₂ + HCl at T = 10°C or less (1) step 4 heat/warm to T > 10°C (1) step 5 CH₃COCl/CH₃COCOCOCH₃ (1) [7]
 - (b) (i) compounds that have the same molecular formula, but different structures (1)
 - (ii) phenol (NOT hydroxy) (1) (methyl) ketone or carbonyl (1)
 - (iii) K is 4-ethanoylphenol, HO-C₈H₄-COCH₃ (must be 1,4- disubstituted isomer) (1)

[Total: 14]

Q30.

reaction I:

reaction II:

Cb + light (1) (not aq)
Br₂ + Al Br₃ or Fe or FeBr₃ (1) (not aq)
NaOH, heat in ethanol (1) (allow aqueous EtOH) reaction III: HNO₃ + H₂SO₄ (1) conc and < 60°C (1) (2 marks) reaction IV:

KMnO₄ + H⁺/OH⁻ + heat (1) reaction V:

reaction VI: Sn + HCl(1)

HNO₂ + HCl, < 10°C (1) reaction VII:

[max 8]

[Total: 8]

Q31.

5 (a) phenol [1] ketone

[2]

(b)

reagent	observation	structure of product	type of reaction
sodium metal	effervescence /bubbles/fizzing	. O · i	redox
aqueous bromine	decolourises or white ppt.	Br O Br	electrophilic substitution
aqueous alkaline iodine	yellow ppt.	HO CO ₂ Na	oxidation

[2]

[8]

[1] + [1]

(ii) step 1: NaNO₂ + HCl or HNO₂ [1] at T < 10°C [1] step 2: (add K to a solution of G) in aqueous NaOH [1] [5] [6] (d)
$$SOC L_2/PC L_5 = PC L_5 + heat (PF L_5 COC) = Add to G (in NaOH (aq)) + L (PF L_5 COC) + Add to G (in NaOH (aq)) +$$

