Mark schemes

Q1.

(a) [H₂O] is (almost) constant

		Allow [H₂O] is (very) large in comparison (to [H⁺] and [OH])	
		or [H_2O] is incorporated in K_w or $K_w = K_c[H_2O]$ or the equilibrium lies <u>very</u> much to the left.	
		Ignore water has negligible dissociation Ignore $[H_2O] = 1$ or $[H_2O]$ is very small 1	1
(b)	M1 E	quilibrium is endothermic (in forward direction)	1
	M2 <u>E</u>	<u>quilibrium</u> shifts to the RHS to minimise/oppose temperature increase Ignore more H ⁺ and OH ⁻ formed) 1
(c)	M1	$pH = -log_{10}[H^+]$ $M1 \ Allow \ pH = -log[H^+]$	1
	M2	$[H^+] = \sqrt{5.48 \times 10^{-14}} (= 2.34 \times 10^{-7})$ M2 $[H^+]^2 = 5.48 \times 10^{-14}$	1
	М3	$pH = -\log_{10} 2.34 \times 10^{-7} = 6.63$ $M3 \ pH = -\log_{10} M2$	1
	M4	 [H⁺] = [OH⁻] or Dissociation of each water molecule gives one H⁺ and one OH⁻ M4 Allow equal amounts of H⁺ and OH⁻ 	
(d)	5.55	Allow 5.5 to 5.6	1
(e)	Differ	ent solutions must not contaminate each other pH of previous solution doesn't contaminate new solution	1

or

[16]

To wash off any residual solution/substance (which could interfere with the reading) Ignore to make neutral/neutralise Ignore so as not to affect concentrations 1 (f) To avoid missing the end point Or (Very little pH change per cm³ added at start) large change in pH (near end point) 1 All have a colour change/pH range within the steep/vertical part (g) of the titration curve Colour change/pH range between pH 3 and 11 1 Amount of $OH^{-} = 36.25 \times 0.200 \div 1000 = 7.25 \times 10^{-3} \text{ mol}$ (h) M1 and Amount of $H^+ = 25.0 \times 0.150 \div 1000 = 3.75 \times 10^{-3}$ mol 1 M2 Amount of excess $OH^{-} = 7.25 \times 10^{-3} - 3.75 \times 10^{-3} = 3.50 \times 10^{-3} \text{ mol}$ 1 M3 $[OH^{-}] = (3.50 \times 10^{-3}) \div (61.25 \times 10^{-3}) (= 5.71 \times 10^{-2} \text{ mol})$ $M3[OH] = (M2) \div (61.25 \times 10^{-3})$ 1 $[H^+] = \underline{1.00 \times 10^{-14}} \div 5.71 \times 10^{-2} = 1.75 \times 10^{-13}$ M4 $M4 [H^+] = 1.00 \times 10^{-14} \div M3$ 1 M5 pH = 12.76 M5 Allow pH = 12.8 $M5 \, pH = -log_{10}(M4)$ Alternative Method M4 p OH = 1.24 $M5 \, pH = 14 - 1.24 = 12.76$ 1 Q2. $K_{\rm a} = 10^{-3.75} = 1.78 \text{ x} 10^{-4} \text{ mol dm}^{-3}$ [HCOOH] $pH = pK_a - log [HCOO^-]$ 1

 $[H^+] = 10^{-4.05} = 8.91 \times 10^{-5} \text{ mol dm}^{-3}$ [HCOOH] $log [HCOO^-] = pK_a - pH = 3.75 - 4.05 = -0.30$

				1	
	[Salt	t] = <u>1.7</u>	$\frac{78 \times 10^{-4} \times 0.100}{8.91 \times 10^{-5}} = 0.200$ $\frac{[\text{HCOOH}]}{[\text{HCOOT}]} = 10^{-0.30} = 0.50 \text{ (and [HCOOH]} = 0.1)$ $(\text{so [HCOO^-]} = 0.200 \text{ mol } dm^{-3})$	1	
	amo	ount =	vol x conc = 0.200 x 25/1000 = 0.00500 mol		
	OR	unt ac	rid = 0.0025 mol so amount salt = 0.005 mol		
	ame		amount = vol x conc = 0.200 x 25/1000 = 0.00500 mol		
				1	
	mas	s = an	nount x <i>M</i> _r = 0.00500 x 68.0 = 0.339 / 0.34 g		
			$mass = amount \ x \ M_r = 0.00500 \ x \ 68.0 = 0.339 \ g$	1	
					[5]
Q3	8.				
	(a)	(Aci	d) partially or slightly ionises/dissociates (in water to form H ⁺ ions)		
			Allow – does not tully ionise/dissociate	1	
	(h)				
	(0)	(Ka)	$= [H^+] [C_2 H_5 COO^-]$		
			[C2H₅COOH]		
			Allow $[H_3O^+]$ for $[H^+]$		
			Do not allow ()		
				1	
	(c)	M1	$[C_2H_5COOH] = 0.125$ (mol dm ⁻³)		
			Allow consequential marking from wrong M1		
			If $[C_2H_5COOH] = 0.0125$ (mol dm ⁻³) lose M1 ,		
			allow M2 , M3 = 4.108 x 10 ⁴ and M4 = 3.39	1	
		M2	$[H^+] = \sqrt{Ka \times [C_2H_5COOH]} \text{ OR } [H^+] = \sqrt{1.35 \times 10^{-5} \times 0.125}$		
				1	
		М3	[H⁺] = 1.30 x 10 ⁻³ (mol dm ⁻³)		
				1	
		M4	$pH = -\log_{10} (1.30 \times 10^{-3}) = 2.89$		
			$Allow \mathbf{M4} = -log_{10} \mathbf{M3}$		
			Answer must be to 2 decimal places	1	
	(.1)			_	
	(d)	W1	[H⁺] = 10 ^{-4.5} = <u>3.16 x 10⁻⁵</u> (mol dm ⁻³)		

OR

1

1

1

1

1

$$[C_{2}H_{5}COO^{-}] = \frac{[C_{2}H_{5}COOH] K_{a}}{[H^{+}]}$$

$$[C_2H_5COO^-] = \frac{0.250 \times 1.35 \times 10^{-5}}{3.16 \times 10^{-5}}$$

M2: Rearrangement If rearrangement incorrect, could score *M1 M4 M5* and *M6*

- **M3** $[C_2H_5COO^-] = 0.1068 \text{ (mol dm}^{-3})$
- M4 M_r sodium propanoate = 96
- **M5** n (sodium propanoate) = 0.1068 x 0.5 = 0.0534
- M6 mass (sodium propanoate, x) = 0.0534 x 96 = 5.13 (g)
 M6 Allow 5.09 to 5.14 (g)

Alternative M5 and M6

M5 0.1068 x 96 = 10.25 (g) M5 = M3 x M4

M6 Mass (sodium propanoate, x) = 2 = 5.13 (g) 10.25 g scores 4 marks If Henderson Hasselbach used M1 pKa = $-log(1.35 \times 10^{-5}) = 4.87$ M2 $log[A^-] = pH - pK_a + log[HA]$ M3 $log[A^-] = 4.50 - 4.87 + (-0.60206) = -0.9717$ M4 $[CH_3CH_2COO^-] = 10^{-0.9717} = 0.1067$ M5 $M_r = 96(.0)$ M6 x = 96.0 x 0.1067/2 = 5.12 g

[12]

1

Q4. B

Q5. A

[1]

[1]

Q6. D		[4]
		[']
Q7.		
(a)	M1: [H ⁺] = [OH ⁻]	
	M1: accept equal number/amounts of H ⁺ and OH ⁻	1
	M2 : [H ⁺] (= 10 ^{-pH}) = 2.138 × 10 ⁻⁷	
	M2 : allow 2.14 × 10 ⁻⁷	1
		_
	M3 : $K_W = [H^+]^2$ OF $(2.138 \times 10^{-7})^2$ M3 : $allow (M2)^2$	
		1
	M4 : $K_{\rm w} = 4.57 \times 10^{-14}$	
	M4 : allow 4.58 × 10 ⁻¹⁴	
	<i>M4</i> is dependent on (an answer) ² in <i>M3</i>	1
(b)	View with Figure X (ie graph) as they may show working there.	
	Ignore calculations of mols of salt or acid	
	M1 : Determines volume at half equivalence (= $\frac{19.5}{2}$ cm ³) = 9.75 (cm ³)	
	<i>M1</i> : Allow reading on graph to be from	
	19.4 to 19.7 giving M1 = 9.7 to 9.85	1
	M2 : pH = 4.80 to 4.95	
	. M2 : Reads off pH at half equivalence	
		1
	M3 : K_a (= 10 ^{-pH}) = 10 ^{-4.9} = 1.26 × 10 ⁻⁵	
	M3 : Allow 1.12 × 10 ⁻⁵ to 1.58 × 10 ⁻⁵	
	M3: Allow 2st or more	1
	Alternative method	
	M1 : pH of pure acid = 3	
	M2 : $K_a = (10^{-3})^2 / 0.080$	
	M3 : = 1.25 × 10 ^{−5}	
	Alternative M1 if calculation incorrect:	
	Allow $pH = pK_a$ or $[H^+] = K_a$ at <u>half equivalence</u>	
(c)	cresolphthalein	

Q8.

[15]

1

1

(d)

$$K_{s} = [H^{+}_{[[HX]}] \text{ or } [H^{+}] = K_{s} \times [HX] \\ [X] \\ \text{allow } [H^{+}] = K_{s} \times [acid] \\ M1: \\ \text{Image: anount of HX = 0.0500 mol} \\ M2: \text{ amount of HX after add}^{\circ} \text{ of KOH = 0.05 - } \frac{3 \times 10^{-4}}{3 \times 10^{-4}} = 0.0497 \text{ mol} \\ M3: \text{ amount of HX after add}^{\circ} \text{ of KOH = 0.0136 + } \frac{3 \times 10^{-4}}{3 \times 10^{-4}} = 0.0139 \\ \text{mol} \\ M4: \text{ amount of KX after add}^{\circ} \text{ of KOH = 0.0136 + } \frac{3 \times 10^{-4}}{3 \times 10^{-4}} = 0.0139 \\ \text{mol} \\ M4: \text{ amount of KX after add}^{\circ} \text{ of KOH = 0.0136 + } \frac{3 \times 10^{-4}}{3 \times 10^{-4}} = 0.0139 \\ \text{mol} \\ M6: \text{pH = } -\log_{10} 5.04(15) \times 10^{-5} = 4.30 \\ \text{Answer to 2 decimal places} \\ \text{If no attempt at M3 and M4 max 2 marks} \\ \text{If M3 or M4 attempted using } 3 \times 10^{-4} \text{ max 4 (M1, M2, M3 or M4 and M6)} \\ \text{(e)} \\ \text{ratio} \begin{bmatrix} |HX| \\ |X^{-}| \\ |X^{-}| \\ |X^{-}| \\ \text{Allow inverse expression} \end{bmatrix}$$

Ignore shape / bond angles Ignore lone pair(s) on O atoms NOT lone pair(s) on S atom

(b) Equation 1: $H_2SO_4 \rightarrow HSO_4^- + H^+ / H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$

(c)

(d)

Equation 1: NOT ≓	1
Equation 2: $HSO_{4^-} \rightleftharpoons SO_{4^{2^-}} + H^+ / HSO_{4^-} + H_2O \rightleftharpoons SO_{4^{2^-}} + H_3O^+$ Equation 2: NOT \rightarrow or \leftrightarrow Allow \Leftarrow or \rightleftharpoons or \leftrightarrows	
Ignore state symbols in both equations Allow multiples in both equations	1
M1 weigh solid and transfer using a method that Allows exact mass to be known (there should be two weighings, one of which could be zeroing, and method could be by difference or with washings or directly weighed into container)	
M1 Ignore any mass quoted	
NOT if any other solid added	1
M2 <u>dissolve</u> in water in suitable container (NOT in 250 cm ³ of water) M2 NOT if any other solution added	1
	1
M3 transfer with washings into 250 cm ³ volumetric/graduated flask M3 Reference to 250 cm ³ can appear anywhere	1
M4 make up to mark / 250 cm³ AND THEN shake / invert / mix M4 Allow if conical flask used NOT if beaker used	
Alternative method (M2-4) M2 in 250 cm ³ volumetric/graduated flask M3 dissolve (NOT in 250 cm ³ of water) M4 make up to mark / 250 cm ³ AND THEN shake/invert/mix	1
M1 [H+] = 10 ^{-1.72} (= 0.0191 (mol dm ⁻³))	
	1
M2 amount NaHSO₄ = 0.605/120.1 (= 5.04 x 10 ⁻³ (mol))	1
M3 initial [NaHSO₄] = [HSO₄⁻] = M2 x 10 (= 5.04 x 10⁻² (mol dm⁻³))	
$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{SO}_{4}^{2^{-}}]}{[\mathrm{HSO}_{4}]}$ or $K_{a} = \frac{[\mathrm{H}^{+}]^{2}}{[\mathrm{HSO}_{4}]}$	1
	1
$M4 K_a = \frac{0.0191^2}{0.0504 - 0.0191}$	1
M5 K _a = 1.17 x 10 ⁻² (1.15 − 1.18 x 10 ⁻²) must be 3sf	

1

		1
	M6 mol dm-₃	
	Correct answer scores M1-5 (must be 3sf) Alternative method that does not subtract 0.0191: 7.21 x 10 ⁻³ (7.15 – 7.26 x 10 ⁻³) scores M1-5 (where M4 $K_a = \frac{0.0191^2}{0.0504}$) If not correct answer: For M1-3 , if answer is shown, it must be correct (Ignore sf) Allow ECF from M1/2/3 to M4 /5 (but not from M3 to M5 if omission of M3 gives negative M5) NOT ECF from incorrect K_a expression in M4 to M5 M6 If not mol dm ⁻³ , Allow ECF for units from incorrect K_a expression in M4 7.21 x 10 ⁻² (7.15 – 7.26 x 10 ⁻²) gives M1,2,4,5 (by alternative method omitting M3)	1
(e)	M1 (HSO ₄ ⁻ \rightleftharpoons SO ₄ ²⁻ + H ⁺) equilibrium moves/shifts left (to counteract / remove increased [SO ₄ ²⁻]) M1 Allow H ⁺ reacts with SO ₄ ²⁻ /sulfate Ignore favours the reverse / left / backwards reaction NOT base / A ⁻ / sodium sulfate in place of SO ₄ ²⁻ /sulfate	
	M2 so [H+] decreases M2 Allow fewer H+ (ions) or amount of H+ lower or removes H+	1
	M2 independent of M1	1 [15]
Q9. R		
D		[1]

Q10.

(a) $[H^+] = (10^{-3.87} =) 1.3489 \times 10^{-4}$ Allow 1.35×10^{-4} . If M1 wrong can only score M2.

$$[CH_{3}COOH] = \frac{[H^{+}] \left[CH_{3}COO^{-} \right]}{[Ka]} = \left(\frac{\left[1.3489 \times 10^{-4} \right] \left[0.136 \right]}{\left[1.74 \times 10^{-5} \right]} = 1.05436 \right)$$

1

1

1

1

Mark is for correctly rearranged equation.

1.05 – 1.06 (mol dm⁻³) 3 sf or more

(b) If 0.007 moles in 500 cm³ seen follow Mark Scheme 1

Mark Scheme 1

1
1
1
1

$$[H^+] = \left(\frac{[Ka][CH_3COOH]}{[CH_3COO^-]}\right) = \frac{\left[1.74 \times 10^{-5}\right][0.123]}{[0.0675]} (=3.171 \times 10^{-5})$$

 $pH = \underline{4.50}$ (must be 2dp)

Method 1 For M3 allow M1 – 0.007 For M4 allow M2 + 0.007

If 0.014 moles in 1 dm³ follow Mark Scheme 2

Mark Scheme 2

moles CH₃COOH after addition = (0.260 - 0.014) = 0.246 (This scores 2 marks) moles CH₃COO⁻ after addition = (0.121 + 0.014) = 0.135 (This scores 2 marks)

 $[H^{+}] = \left(\frac{[Ka][CH_{3}COOH]}{[CH_{3}COO^{-}]}\right) = \frac{\left[1.74 \times 10^{-5}\right][0.246]}{[0.135]}$

pH = 4.50 (must be 2dp)

Method 1 and 2 M5 = expression with their numbers M6 = answer to 2 dp

pH = 4.50 scores 6 marks

If $\sqrt{\text{used in } K_a}$ expression, stop at M4 If divide by 2 after M5, lose M6 Allow solutions which use Henderson-Hasselbach Equation

[9]

1

1

1

1

1

1

Q11.

(a) 7–10.2

any range (i.e. 2 values) within this range

 $K_{a} = \frac{[H^{+}][X^{-}]}{[HX]}$ (b) ALLOW H_3O^+ for H^+ and A for X IGNORE [H+]^p/[HX] must be square brackets IGNORE state symbols Amount NaOH = $(24.0 \times 0.100)/1000 = 2.40 \times 10^{-3}$ mol (c) (= amount HX) Conc HX = $2.40 \times 10^{-3}/0.025 = 0.0960 \text{ mol dm}^{-3}$ ecf for M1/0.025 (d) $(K_a = 2.62 \times 10^{-5} = [H^+]^2/0.0960)$ $[H^+] = \sqrt{(2.62 \times 10^{-5} \times 0.0960)} (= 1.59 \times 10^{-3} \text{ mol dm}^{-3})$ ecf from part (c) $[H^+] = \sqrt{(2.62 \times 10^{-5} \times ans to part)}$ (c)) From alternative data $[H^+] = \sqrt{(2.62 \times 10^{-5} \times 0.600)} (= 3.96 \times 10^{-3} \text{ mol})$ dm⁻³) $(pH = -log 1.59 \times 10^{-3} =) 2.80$ (must be 2 or more dp) pH = 2.40 (must be 2 or more dp) M2 dependent on a calculation of [H+] $(pH at half-neutralisation = pK_a)$ (e) $= -\log 2.62 \times 10^{-5} = 4.58$ (must be 2 or more dp) ALLOW 1dp if already penalised in part (d) (f) Both points plotted correctly and line touches both points ecf from (d) and (e) within 1 small square Line steeper at start then levels (to show buffering)

Mark independently

		1	[9]
Q12. B			[1]
Q13. B			[1]
Q14. B			[1]
Q15. (a)	Proton donor		
(b)	Completely ionises to give H ⁺ ions in water	1	
(c)	0.058 mol dm ⁻³	1	
	1.24	1	
(d)	Amount of NaOH = 5.25×10^{-3}	1	
	Since 1:1 reaction amount of OH- ions in excess		
	= 5.25 × 10⁻³ − 1.45 × 10⁻³ mol		
	= 3.80 × 10 ⁻³ moles OH ⁻	1	
	[OH ⁻] = 3.80 × 10 ⁻³ × 1000/60 = 0.0633	1	
	$K_{\rm w} = [\rm H^+][\rm OH^- \ so \ H^+ = \overline{0.0633} = 1.58 \times 10^{-13}$	1	
	pH = 12.80	1	
(e)	Amount of OH ⁻ added 1.5 / 40 = 0.0375 mol	1	
	Use of 1:1 ratio to calculate amount of A^- formed = 0.0375 mol		

			1	
		Amount of weak acid initially = $1 \times 0.15 = 0.150$ mol so amount of weak acid after addition of NaOH = $0.150 - 0.0375 = 0.1125$		
		IT M3 Incorrect can only score max of 3 marks	1	
		$[H^+] = K_a [HA]/[A^-] \text{ or } [H^+] = 1.79 \times 10^{-5} \times 0.1125/0.0375$	1	
		= 5.37 × 10 ⁻⁵	1	
		pH = 4.27	-	
			1	[15]
Q1(6.			
-	(a)	Formula of any strong acid (e.g. HCI)	1	
		Formula of a weak alkali (e.g. NH3)	1	
	(b)	Place a fixed volume of alkali in a flask or beaker		
		Add acid in small portions from a burette	1	
			1	
		Stir and use a pH meter to record the pH after each addition of acid	1	
	(c)	Repeat the experiment with each indicator	1	
		Select the indicator that changes colour rapidly when the pH changes from	m	
			1	[7]
04	-			
Q1	/ . (a)	Burette	1	
		Because it can deliver variable volumes	1	
	<i>(</i> 1.)		1	
	(b)	The change in pH is gradual / not rapid at the end point	1	
		An indicator would change colour over a range of volumes of sodium		

hydroxide

Allow indicator would not change colour rapidly / with a few drops of NaOH

		1	
(c)	$[H^+] = 10^{-pH} = 1.58 \times 10^{-12}$	1	
	$\mathcal{K}_{w} = [H^+] [OH^-]$ therefore $[OH^-] = \mathcal{K}_{w} / [H^+]$	1	
	Therefore, $[OH^{-}] = 1 \times 10^{-14} / 1.58 \times 10^{-12} = 6.33 \times 10^{-3} \pmod{\text{dm}^{-3}}$ Allow 6.31–6.33 × 10 ⁻³ (mol dm ⁻³)	1	
(d)	At this point, $[NH_3] = [H^+]$ = $[H^+]^2$		
	Therefore K_a [NH ₄ ⁺]	1	
	$[H^+] = 10^{-4.6} = 2.51 \times 10^{-5}$	1	
	$K_{a} = (2.51 \times 10^{-5})^{2} / 2 = 3.15 \times 10^{-10} \text{ (mol dm}^{-3})$		
	Allow 3.15 – 3.16 × 10 ⁻¹⁰ (mol dm ⁻³)	1	
(e)	When $[NH_3] = [NH_4^+]$, $K_a = [H^+]$ therefore $-\log K_a = -\log [H^+]$ Answer using alternative value	1	
	Therefore pH = $-\log_{10}(3.15 \times 10^{-10}) = 9.50$ M2 pH = $-\log_{10}(4.75 \times 10^{-9}) = 8.32$		
	Allow consequential marking based on answer from part (d)	1 [1:	2]
018			
C		r.	41
		Ľ	IJ

Q1	9.
	В

Q20.

С

[1]

[1]