Mark schemes

Q1.
(a) $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is (almost) constant

Allow

[$\mathrm{H}_{2} \mathrm{O}$] is (very) large in comparison (to [H^{+}] and [OH])
or $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is incorporated in K_{w}
or $K_{w}=K_{c}\left[H_{2} \mathrm{O}\right]$
or the equilibrium lies very much to the left.
Ignore water has negligible dissociation Ignore $\left[\mathrm{H}_{2} \mathrm{O}\right]=1$ or $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is very small 1
(b) M1 Equilibrium is endothermic (in forward direction)

M2 Equilibrium shifts to the RHS to minimise/oppose temperature increase Ignore more H^{+}and OH formed
(c) $\mathrm{M} 1 \quad \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

$$
\text { M1 Allow } \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

M2 $\quad\left[\mathrm{H}^{+}\right]=\sqrt{ } 5.48 \times 10^{-14}\left(=2.34 \times 10^{-7}\right)$
M2 $\left[\mathrm{H}^{+}\right]^{2}=5.48 \times 10^{-14}$

M3 $\mathrm{pH}=-\log _{10} 2.34 \times 10^{-7}=6.63$
M3 $\mathrm{pH}=-\log _{10} \mathrm{M} 2$

M4 $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
or
Dissociation of each water molecule gives one H^{+}and one OH^{-} M4 Allow equal amounts of H^{+}and OH
(d) 5.55

Allow 5.5 to 5.6
1
(e) Different solutions must not contaminate each other pH of previous solution doesn't contaminate new solution
or

To wash off any residual solution/substance (which could interfere with the reading)

Ignore to make neutral/neutralise
Ignore so as not to affect concentrations
(f) To avoid missing the end point

Or
(Very little pH change per cm^{3} added at start) large change in pH (near end point)
(g) All have a colour change/pH range within the steep/vertical part of the titration curve

Colour change/pH range between pH 3 and 11
(h) M1 Amount of $\mathrm{OH}^{-}=36.25 \times 0.200 \div 1000=7.25 \times 10^{-3} \mathrm{~mol}$ and Amount of $\mathrm{H}^{+}=25.0 \times 0.150 \div 1000=3.75 \times 10^{-3} \mathrm{~mol}$

M2 Amount of excess $\mathrm{OH}^{-}=7.25 \times 10^{-3}-3.75 \times 10^{-3}=3.50 \times 10^{-3} \mathrm{~mol}$

M3 $\quad\left[\mathrm{OH}^{-}\right]=\left(3.50 \times 10^{-3}\right) \div\left(61.25 \times 10^{-3}\right)\left(=5.71 \times 10^{-2} \mathrm{~mol}\right)$

$$
M 3[O H]=(M 2) \div\left(61.25 \times 10^{-3}\right)
$$

M4 $\left[\mathrm{H}^{+}\right]=\frac{1.00 \times 10^{-14} \div 5.71 \times 10^{-2}=1.75 \times 10^{-13}}{M 4\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-14} \div \mathrm{M} 3}$

M5 $\mathrm{pH}=12.76$
M5 Allow pH = 12.8
M5 $\mathrm{pH}=-\log _{10}(\mathrm{M} 4)$
Alternative Method
M4 p OH = 1.24
$M 5 p H=14-1.24=12.76$

Q2.

$$
\begin{aligned}
& K_{\mathrm{a}}=10^{-3.75}=1.78 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \\
& p H=p K_{a}-\log \left[\mathrm{HCOOH}^{\left[\mathrm{HCOO}^{-}\right]}\right]
\end{aligned}
$$

```
\(\left[\mathrm{H}^{+}\right]=10^{-4.05}=8.91 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\)
    [ HCOOH ]
    \(\log \left[\mathrm{HCOO}^{-}\right]=p K_{a}-p H=3.75-4.05=-0.30\)
```

```
\([\) Salt \(]=1.78 \times 10^{-4} \times 0.100=0.200\)
    \(8.91 \times 10^{-5}\)
        [ HCOOH ]
    \(\left[\mathrm{HCOO}^{-}\right]=10^{-0.30}=0.50(\) and \([\mathrm{HCOOH}]=0.1)\)
    (so \(\left[\mathrm{HCOO}^{-}\right]=0.200 \mathrm{~mol} \mathrm{dm}^{-3}\) )
```

amount $=$ vol \times conc $=0.200 \times 25 / 1000=0.00500 \mathrm{~mol}$ OR
amount acid $=0.0025 \mathrm{~mol}$ so amount salt $=0.005 \mathrm{~mol}$ amount $=$ vol \times conc $=0.200 \times 25 / 1000=0.00500$ mol

```
mass \(=\) amount \(\times M_{r}=0.00500 \times 68.0=0.339 / 0.34 \mathrm{~g}\)
    mass \(=\) amount \(\times M_{r}=0.00500 \times 68.0=0.339 \mathrm{~g}\)
```

Q3.
(a) (Acid) partially or slightly ionises/dissociates (in water to form H^{+}ions) Allow - does not fully ionise/dissociate
(b)
$\left(\mathrm{K}_{\mathrm{a}}\right)=\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$
[$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$]
Allow $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$
Do not allow ()
(c) M1 $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=\underline{0.125}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

Allow consequential marking from wrong M1
If $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=0.0125\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ lose M1, allow M2, M3 = 4.108×10^{-4} and $\boldsymbol{M 4}=3.39$

M2 $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{Ka} \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}$ OR $\left[\mathrm{H}^{+}\right]=\sqrt{1.35 \times 10^{-5} \times 0.125}$

M3 $\quad\left[\mathrm{H}^{+}\right]=1.30 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

M4 $\mathrm{pH}=-\log _{10}\left(1.30 \times 10^{-3}\right)=2.89$
Allow M4 $=-\log _{10}$ M3
Answer must be to 2 decimal places
(d) M1 $\left[\mathrm{H}^{+}\right]=10^{-4.5}=\underline{3.16 \times 10^{-5}}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

$$
\begin{aligned}
& {\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right] \mathrm{K}_{3}} \\
& \text { M2 } \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\frac{0.250 \times 1.35 \times 10^{-5}}{3.16 \times 10^{-5}}} \\
& \text { OR } \\
& \text { If rearrangement incorrect, could score M1 M4 M5 } \\
& \text { and M6 } \\
& \text { M3 } \quad\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=0.1068\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\
& \text { M4 } M_{\text {r }} \text { sodium propanoate }=96 \\
& \text { M5 } \mathrm{n} \text { (sodium propanoate) }=0.1068 \times 0.5=0.0534 \\
& \text { M6 mass (sodium propanoate, } \mathrm{x} \text {) }=0.0534 \times 96=5.13(\mathrm{~g}) \\
& \text { M6 Allow } 5.09 \text { to } 5.14 \text { (g) } \\
& \text { Alternative M5 and M6 } \\
& \text { M5 } \quad 0.1068 \times 96=10.25(\mathrm{~g}) \\
& \text { M5 = M3 } \times \text { M4 } \\
& \text { M6 Mass (sodium propanoate, } \mathrm{x})=\frac{\frac{10.25}{2}}{=5.13(\mathrm{~g})} \\
& 10.25 \mathrm{~g} \text { scores } 4 \text { marks } \\
& \text { If Henderson Hasselbach used } \\
& \text { M1 pKa }=-\log \left(1.35 \times 10^{-5}\right)=4.87 \\
& \text { M2 } \log [A-]=p H-p K_{a}+\log [H A] \\
& \text { M3 } \log \left[A^{-}\right]=4.50-4.87+(-0.60206)=-0.9717 \\
& \text { M4 }\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=10^{-0.9717}=0.1067 \\
& \text { M5 } M_{r}=96(.0) \\
& \text { M6 } x=96.0 \times 0.1067 / 2=5.12 g
\end{aligned}
$$

1

Q4.
B

Q5.
A

Q6.
D

Q7.
(a) $\quad \mathrm{M} 1:\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

M1: accept equal number/amounts of H^{+}and OH

M2: $\left[\mathrm{H}^{+}\right]\left(=10^{-\mathrm{pH}}\right)=2.138 \times 10^{-7}$
M2: allow 2.14×10^{-7}

M3: $K_{w}=\left[\mathrm{H}^{+}\right]^{2}$ or $\left(2.138 \times 10^{-7}\right)^{2}$
M3: allow (M2) ${ }^{2}$

M4: $K_{w}=4.57 \times 10^{-14}$
M4: allow 4.58×10^{-14}
M4 is dependent on (an answer) ${ }^{2}$ in M3
(b) View with Figure X (ie graph) as they may show working there.

Ignore calculations of mols of salt or acid
M1: Determines volume at half equivalence $\left(=\frac{19.5}{2} \mathrm{~cm}^{3}\right)=9.75$ (cm^{3})

M1: Allow reading on graph to be from
19.4 to 19.7 giving M1 = 9.7 to 9.85

M2: $\mathrm{pH}=4.80$ to 4.95
M2: Reads off pH at half equivalence

M3: $K_{a}\left(=10^{-\mathrm{pH}}\right)=10^{-4.9}=1.26 \times 10^{-5}$
M3: Allow 1.12×10^{-5} to 1.58×10^{-5}
M3: Allow 2sf or more

Alternative method
M1: pH of pure acid $=3$
M2: $K_{a}=\left(10^{-3}\right)^{2} / 0.080$
M3: $=1.25 \times 10^{-5}$
Alternative M1 if calculation incorrect:
Allow $\mathrm{pH}=p K_{a}$ or $\left[\mathrm{H}^{+}\right]=K_{a}$ at half equivalence
(c) cresolphthalein
(d)

M2: amount of $\mathrm{HX}=0.0500 \mathrm{~mol}$

M3: amount of HX after add ${ }^{\text {n }}$ of $\mathrm{KOH}=0.05-\underline{3 \times 10^{-4}}=0.0497 \mathrm{~mol}$

$$
M 3:=M 2-3 \times 10^{-4}
$$

M4: amount of KX after addn of $\mathrm{KOH}=0.0136+\underline{3 \times 10^{-4}}=0.0139$ mol

$\left[\mathrm{H}^{+}\right]=\left(1.41 \times 10^{-5} \times 0.0497\right)=\underline{5.04(15) \times 10^{-5}}$
 M5: $\quad 0.0139$

M6: $\mathrm{pH}=-\log _{10} 5.04(15) \times 10^{-5}=4.30$
Answer to 2 decimal places
If no attempt at M3 and M4 max 2 marks
If M3 or M4 attempted using 3×10^{-4} max 4 (M1, M2, M3 or M4 and M6)
(e)
ratio $\frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}$
Allow inverse expression

Q8.
(a)

Ignore shape / bond angles Ignore lone pair(s) on O atoms NOT lone pair(s) on S atom
(b) Equation 1: $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Equation 1: NOT \rightleftharpoons
1
Equation 2: $\mathrm{HSO}_{4}{ }^{-} \rightleftharpoons \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+} / \mathrm{HSO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Equation 2: NOT \rightarrow or \leftrightarrow
Allow \leftrightharpoons or \rightleftarrows or \leftrightarrows

Ignore state symbols in both equations
Allow multiples in both equations
(c) M1 weigh solid and transfer using a method that Allows exact mass to be known (there should be two weighings, one of which could be zeroing, and method could be by difference or with washings or directly weighed into container)

M1 Ignore any mass quoted
NOT if any other solid added

M2 dissolve in water in suitable container (NOT in $250 \mathrm{~cm}^{3}$ of water)
M2 NOT if any other solution added

M3 transfer with washings into $250 \mathrm{~cm}^{3}$ volumetric/graduated flask
M3 Reference to $250 \mathrm{~cm}^{3}$ can appear anywhere

M4 make up to mark / $250 \mathrm{~cm}^{3}$ AND THEN shake / invert / mix
M4 Allow if conical flask used
NOT if beaker used

Alternative method (M2-4)

M2 in 250 cm³ volumetric/graduated flask
M3 dissolve (NOT in 250 cm³ of water)
M4 make up to mark / $250 \mathrm{~cm}^{3}$ AND THEN shake/invert/mix
(d) $\quad \mathbf{M 1}\left[\mathrm{H}^{+}\right]=10^{-1.72}\left(=0.0191\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$

M3 initial $\left[\mathrm{NaHSO}_{4}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=\mathbf{M 2} \times 10\left(=5.04 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]} \text {or } K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HSO}_{4}^{-}\right]}
$$

M4 $K_{\mathrm{a}}=\frac{0.0191^{2}}{0.0504-0.0191}$

M5 $K_{a}=1.17 \times 10^{-2}\left(1.15-1.18 \times 10^{-2}\right)$ must be 3sf

M6 mol dm ${ }^{-3}$
Correct answer scores M1-5 (must be 3sf)
Alternative method that does not subtract 0.0191:
$7.21 \times 10^{-3}\left(7.15-7.26 \times 10^{-3}\right)$ scores M1-5
(where M4 $\quad K_{\mathrm{a}}=\frac{0.0191^{2}}{0.0504}$)
If not correct answer:
For M1-3, if answer is shown, it must be correct (lgnore sf)
Allow ECF from M1/2/3 to M4/5 (but not from M3 to M5 if omission of M3 gives negative M5)
NOT ECF from incorrect K_{a} expression in M4 to M5
M6 If not mol dmr${ }^{3}$, Allow ECF for units from incorrect K_{a} expression in M4
$7.21 \times 10^{-2}\left(7.15-7.26 \times 10^{-2}\right)$ gives
M1,2,4,5 (by alternative method omitting M3)
(e) $\quad \mathbf{M 1}\left(\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}\right)$equilibrium moves/shifts left (to counteract / remove increased [$\left.\mathrm{SO}_{4}{ }^{2}\right]$)

M1 Allow H^{+}reacts with $\mathrm{SO}_{4}{ }^{2-}$ sulfate
Ignore favours the reverse / left / backwards reaction
NOT base / A^{-}/ sodium sulfate in place of $\mathrm{SO}_{4}{ }^{2-}$ /sulfate
M2 so [H^{+}] decreases
M2 Allow fewer H^{+}(ions) or amount of H^{+}lower or removes H^{+}
M2 independent of M1

Q9.
B

Q10.
(a) $\left[\mathrm{H}^{+}\right]=\left(10^{-3.87}=\right) 1.3489 \times 10^{-4}$

Allow 1.35×10^{-4}. If M1 wrong can only score M2.

Mark is for correctly rearranged equation.

```
1.05-1.06 (mol dm-3)
    3 \text { sf or more}
```

(b) If $\mathbf{0 . 0 0 7}$ moles in $500 \mathbf{c m}^{\mathbf{3}}$ seen follow Mark Scheme $\mathbf{1}$

Mark Scheme 1

moles ethanoic acid $=0.130$
moles sodium ethanoate $=0.0605$
mol CH3 ${ }_{3} \mathrm{COOH}$ after addition $=(0.130-0.007)=0.123$
$\mathrm{mol} \mathrm{CH}_{3} \mathrm{COO}^{-}$after addition $=(0.0605+0.007)=0.0675$
$\left[\mathrm{H}^{+}\right]=\left(\frac{[\mathrm{Ka}]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}\right)=\frac{\left[1.74 \times 10^{-5}\right][0.123]}{[0.0675]}\left(=3.171 \times 10^{-5}\right)$
$\mathrm{pH}=\underline{4.50}$ (must be 2dp)

Method 1
For M3 allow M1-0.007
For M4 allow M2 + 0.007

If $\mathbf{0 . 0 1 4}$ moles in $\mathbf{1 ~ d m}{ }^{\mathbf{3}}$ follow Mark Scheme $\mathbf{2}$

Mark Scheme 2

moles $\mathrm{CH}_{3} \mathrm{COOH}$ after addition $=(0.260-0.014)=0.246$ (This scores 2 marks)
moles $\mathrm{CH}_{3} \mathrm{COO}^{-}$after addition $=(0.121+0.014)=0.135$ (This scores 2 marks)
$\left[\mathrm{H}^{+}\right]=\left(\frac{[\mathrm{Ka}]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}\right)=\frac{\left[1.74 \times 10^{-5}\right][0.246]}{[0.135]}$
$\mathrm{pH}=\underline{4.50}$ (must be 2dp)
Method 1 and 2
M5 = expression with their numbers
M6 = answer to $2 d p$
pH = 4.50 scores 6 marks
If Jused in K_{a} expression, stop at M4
If divide by 2 after M5, lose M6

Allow solutions which use Henderson-Hasselbach Equation

Q11.
(a) 7-10.2
any range (i.e. 2 values) within this range
(b) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$

ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$for H^{+}and A for X
IGNORE $\left[\mathrm{H}^{+}\right]^{2}[[\mathrm{HX}]$
must be square brackets
IGNORE state symbols
(c) Amount $\mathrm{NaOH}=(24.0 \times 0.100) / 1000=2.40 \times 10^{-3} \mathrm{~mol}$
(= amount HX)
Conc HX $=2.40 \times 10^{-3} / 0.025=0.0960 \mathrm{~mol} \mathrm{dm}^{-3}$
ecf for M1/0.025
(d) $\quad\left(\mathrm{K}_{\mathrm{a}}=2.62 \times 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} / 0.0960\right)$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(2.62 \times 10^{-5} \times 0.0960\right)\left(=1.59 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right)$
ecf from part (c) $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(2.62 \times 10^{-5} \times\right.$ ans to part (c))

From alternative data
$\left[H^{+}\right]=\sqrt{ }\left(2.62 \times 10^{-5} \times 0.600\right)\left(=3.96 \times 10^{-3} \mathrm{~mol}\right.$ d^{-3})
$\left(\mathrm{pH}=-\log 1.59 \times 10^{-3}=\right) 2.80$ (must be 2 or more dp)
$\mathrm{pH}=2.40$ (must be 2 or more dp) M2 dependent on a calculation of $\left[\mathrm{H}^{+}\right]$
(e) $\left(\mathrm{pH}\right.$ at half-neutralisation $\left.=\mathrm{pK}_{\mathrm{a}}\right)$
$=-\log 2.62 \times 10^{-5}=4.58$ (must be 2 or more dp)
ALLOW 1dp if already penalised in part (d)
(f) Both points plotted correctly and line touches both points ecf from (d) and (e) within 1 small square

Line steeper at start then levels (to show buffering)
Mark independently

Q12.
B

Q13.
B

Q14.
B

Q15.

(a) Proton donor
(b) Completely ionises to give H^{+}ions in water
(c) $0.058 \mathrm{~mol} \mathrm{dm}^{-3}$

1.24

(d) Amount of $\mathrm{NaOH}=5.25 \times 10^{-3}$

Since 1:1 reaction amount of OH - ions in excess
$=5.25 \times 10^{-3}-1.45 \times 10^{-3} \mathrm{~mol}$
$=3.80 \times 10^{-3} \mathrm{moles} \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=3.80 \times 10^{-3} \times 1000 / 60=0.0633$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right.$so $\mathrm{H}^{+}=\frac{10^{-14}}{0.0633}=1.58 \times 10^{-13}$
$\mathrm{pH}=12.80$
(e) Amount of OH^{-}added $1.5 / 40=0.0375 \mathrm{~mol}$

Use of 1:1 ratio to calculate amount of A^{-}formed $=0.0375 \mathrm{~mol}$

Amount of weak acid initially $=1 \times 0.15=0.150 \mathrm{~mol}$ so amount of weak acid after addition of $\mathrm{NaOH}=0.150-0.0375=0.1125$

If M3 incorrect can only score max of 3 marks
$\left[\mathrm{H}^{+}\right]=K_{a}[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$or $\left[\mathrm{H}^{+}\right]=1.79 \times 10^{-5} \times 0.1125 / 0.0375$
$=5.37 \times 10^{-5}$
$\mathrm{pH}=4.27$

Q16.

(a) Formula of any strong acid (e.g. HCl)

Formula of a weak alkali (e.g. NH_{3})
(b) Place a fixed volume of alkali in a flask or beaker

Add acid in small portions from a burette

Stir and use a pH meter to record the pH after each addition of acid
(c) Repeat the experiment with each indicator

Select the indicator that changes colour rapidly when the pH changes from about 7 to 4

Q17.
(a) Burette

Because it can deliver variable volumes
(b) The change in pH is gradual / not rapid at the end point

An indicator would change colour over a range of volumes of sodium hydroxide

Allow indicator would not change colour rapidly / with a few drops of NaOH
(c) $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=1.58 \times 10^{-12}$

Therefore, $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 1.58 \times 10^{-12}=6.33 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Allow 6.31-6.33 $\times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(d) At this point, $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{H}^{+}\right]$

Therefore $K_{a} \quad=\frac{\left[\mathrm{H}^{+} l^{2}\right.}{\left[\mathrm{NH}_{4}^{+}\right]}$
$\left[\mathrm{H}^{+}\right]=10^{-4.6}=2.51 \times 10^{-5}$
$K_{a}=\left(2.51 \times 10^{-5}\right)^{2} / 2=3.15 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Allow $3.15-3.16 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(e) When $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}+\right], K_{a}=\left[\mathrm{H}^{+}\right]$therefore $-\log K_{a}=-\log \left[\mathrm{H}^{+}\right]$

Answer using alternative value

Therefore $\mathrm{pH}=-\log _{10}\left(3.15 \times 10^{-10}\right)=9.50$
M2 $\mathrm{pH}=-\log _{10}\left(4.75 \times 10^{-9}\right)=8.32$
Allow consequential marking based on answer from part (d)

Q18.
C

Q19.
B

Q20.
C

